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ABSTRACT 

The Crypt of Colonia Güell (1898-1914), designed by the architect Antoni Gaudí, is an asset of cultural interest and histori-
cal heritage of Spain. According to some historians and architects, the first vaults with the form of a hyperbolic paraboloid 
that have been described are found on the roof of the entrance porch to the Crypt. The present study aims to verify the 
previous statement using an objective geometric method. With this process we determine: 1) What are the 19 hyperbolic 
paraboloids that best fit the surfaces generated by the 19 fragments of vaults at the entrance porch; 2) We offer an objective 
measure of this fit and, 3) We classify those paraboloids based on their geometric parameters.  

Keywords: Architectural surface, geometric determination, Colonia Güell, hyperbolic paraboloid, Antoni Gaudí. 

RESUMEN

La Cripta de la Colonia Güell (1898-1914) diseñada por el arquitecto Antoni Gaudí, es un bien de interés cultural y 
patrimonio histórico de España. Según algunos historiadores y arquitectos, las primeras bóvedas de la historia de la 
arquitectura con forma de paraboloide hiperbólico se encuentran en el techo del pórtico de acceso a la cripta. El presente 
estudio pretende comprobar la anterior afirmación con un método geométrico objetivo. Con este proceso determinamos: 
1) Cuáles son los 19 paraboloides hiperbólicos que mejor se ajustan a las superficies generadas por los 19 fragmentos de
bóvedas que conforman el pórtico; 2) Ofrecemos una medida objetiva de tal ajuste y, 3) Presentamos una clasificación de
tales paraboloides mediante sus parámetros geométricos.

Palabras clave: Superficie arquitectónica, Determinación geométrica, Colonia Güell, paraboloide hiperbólico, Antoni 
Gaudí.
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1.  Introduction

The Colònia Güell was a purpose-built industrial district in 
Santa Coloma de Cervelló (Barcelona). Its construction be-
gan in 1890 on the initiative of Eusebi Güell y Bacigalupi, 
a Spanish entrepreneur. The crypt of the church, commis-
sioned by Güell and designed by Antoni Gaudí (1-2), is the 
most remarkable building in this complex. Despite remaining 
unfinished following the death of its owner in 1918, the crypt 
has been the subject of many studies because of its structural 
and geometric innovation. According to (1), hyperbolic pa-
raboloids were used here for the first time in the history of 
architecture. For this reason, and also because of the archi-
tectural prowess of the indoor space and the entrance porch, 
this building is considered to be one of the key pieces of the 
twentieth century architecture. 

The porch giving access to the crypt comprises a set of pillars, 
arches and vaults. These vaults fill the triangular and trap-
ezoidal voids of the arch structure (Figure 1). According to 
(1, 3), the normal solution would have been to build positive 
double-curvature vaults, which were very common amongst 
the Catalan architects at the time (4-5). Despite that, (6) 
claims that these are the first vaults in the history of architec-
ture having the shape of a hyperbolic paraboloid.
 
When talking about the architectural composition and mor-
phology of the entrance porch, it is claimed that all of its 19 
vaults were designed in the shape of hyperbolic paraboloids 
– in this regard, readers may turn to the following biblio-
graphic references: (1, 2, 3, 6, 7, 8, 9, 10, 11). Besides, 13 of 
these surfaces are decorated with coloured ceramic crosses 
which, according to (1), follow the straight directrices of these 
hyperbolic paraboloids (Figures 3-4). 

This purpose of this paper is to check if those claims are true.
 
In order to achieve our results, we use a mathematically ob-
jective method to find the 19 hyperbolic paraboloids which 
best fit the surfaces of the 19 vaults forming the entrance 
porch to the crypt of Colònia Güell (Figures 2 and 3), and we 
also provide an objective measurement of that fit.
 
This method does not involve mechanical, constructive or 
structural processes; it only involves standard geometric 
processes, numerical processes, computing, statistics and 3D 
data acquisition. Lastly, using these techniques we provide 
the geometric parameters of these paraboloids. 

Figures 2 and 3 below show the aforementioned 19 vaults in 
their entirety. For this reconstruction, we have used photo-
grammetrical techniques and 3D modelling with commercial 
software PhotoScan and MeshLab.

2. � Method used to determine the 
hyperbolic paraboloid and its 
geometric elements 

2.1. G eometric regression 

Let N = P
i{ }i=1i=n  be the point cloud outlining the surface con-

tour of a vault in the entrance porch to the crypt of Colònia 
Güell. These points were obtained using photogrammetri-
cal techniques and the software PhotoScan. Table 1 shows 
the number n of points in each of the clouds forming the 
studied vaults. For these points, we use 3D coordinates (x′, 

y′, z′) according to the 3D orthonormal coordinate system 

′R = O ; 

u
1
, 

u
2
, 

u
3{ }  of the scanning device (Figures 4 and 5). 

Figure 1.  Entrance porch to the crypt of Colònia Güell by Antoni Gaudí. [Picture taken by the authors.] 
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cos θ( ) u1 + sin ϕ + π
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sin θ( ) u2 + cos ϕ + π
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⎛
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⎞
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[1]

 

	

v
2ϕθ = −sin θ( ) u1 + cos θ( ) u2 	 [2] 

	


v
3ϕθ = sin ϕ( )cos θ( ) u1 + sin ϕ( )sin θ( ) u2 + cos ϕ( ) u3 	 [3]

 

It is to be noted that the spatial position of this reference ℛ′ is 
geometrically unknown at the start of calculations. 

The geometric determination process begins by changing from 
the initial coordinates to the coordinates (x, y, z)

φθα
 of the follow-

ing orthonormal reference system Rϕθα = O ; 

e
1ϕθα , 


e
2ϕθα , 


e
3ϕθα{ }

which is mobile depending on φ, θ and α, as follows [1-2-3-
4-5-6]:

Figure 2.  Three-dimensional model of the 19 vaults forming the entrance porch to the crypt. [Image generated by the authors].

Figure 3.  Orthogonal projection on the ground plane of the 19 vaults forming the entrance porch to the crypt. In the right image, 
the 13 vaults which bear a coloured ceramic cross on their surfaces are highlighted in red. The triangle pinpoints the location 

of the entrance to the crypt. [Image generated by the authors.] 
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perpendicular to 

v
3ϕθ  and lies within linear subspace 


u
1
, 


u
2 . 

Third (using formula [1]), by means of cross product we generate 

vector 

v
1ϕθ  such that the basis 


v
1ϕθ , 

v
2ϕθ , 

v
3ϕθ{ }  is orthonormal 

and direct. Fourth (using formulas [4-5] and angular ampli-

tude α), we rotate vectors 

v
1ϕθ , 

v
2ϕθ{ }  around vector 


v
3ϕθ= 


e
3ϕθα  

(formula [6]), thus obtaining the rotated vectors 

e
1ϕθα , 


e
2ϕθα{ }  such 

that the basis 

e
1ϕθα , 


e
2ϕθα , 


e
3ϕθα{ }  is orthonormal and direct. 

Therefore, after defining parameters φ, θ and α, we have the 
coordinates (x

i
, y

i
, z

i
)

φθα
 in the reference system ℛ

φθα
 for each 

of the points P
i
 in the cloud N = P

i{ }
i=1

i=n
. 

Next we calculate Г
φθα

, which is the surface of the regression 
hyperbolic paraboloid which fits to cloud N, and we obtain 
the following equation Eq. [7] in the reference system ℛ

φθα
:

	 Γϕθα ≡ 0 = Bϕθαx
2 +Cϕθαy

2 +Hϕθαx + Iϕθαy + Jϕθα z + 1 	 [7] 

where φ ∈ [0, π), θ ∈ [0, π). 

	


e
1ϕθα = cos α( ) v1ϕθ + sin α( ) v2ϕθ 	

[4]

	


e
2ϕθα = −sin α( ) v1ϕθ + cos α( ) v2ϕθ  	

[5]

	


e
3ϕθα =


v
3ϕθ  	

[6]
 

where α ∈ [0, π). 

We said that the orthonormal reference system ℛ
φθα

 is mobile 
depending on φ, θ and α because ℛ

φθα
 is the rotation of system 

′R = O ; 

u
1
, 

u
2
, 

u
3{ } when φ, θ and α change. A progressive way 

of generating that rotation is as follows: First (using formula 
[3] and angular amplitudes φ, θ), we place a unit vector 


v
3ϕθ  

in any position. Second (using formula [2] and angular am-
plitude θ), we place unit vector 


v
2ϕθ  in such a way that it is 

Figure 4.  Three-dimensional model of vault number 5, as generated with the software PhotoScan; its cloud N is made up by n = 148622 
points. [Image generated by the authors.] 

Table 1.  Number n of points in each of the clouds N forming the studied vaults. 

Vault # Number of points n in cloud N Vault # Number of points n in cloud N

1 50046 11 415198 

2 125451 12 371637 

3 125645 13 98293 

4 179999 14 350632 

5 148622 15 212260 

6 31180 16 245032 

7 320018 17 364235 

8 380264 18 293295 

9 438630 19 228404 

10 281882 - - 



5

Geometric determination of the hyperbolic paraboloids of the vaults in the entrance porch to the Crypt of Colònia Güell by Antoni Gaudí

Determinación geométrica de los paraboloides hiperbólicos de las bóvedas que configuran el pórtico de acceso a la Cripta de la Colonia Güell de Antoni Gaudí

Informes de la Construcción, Vol. 71, 554, e295, abril-junio 2019. ISSN-L: 0020-0883. https://doi.org/10.3989/ic.63691

Figure 5.  Three-dimensional renderings of the point clouds N which define the studied vaults (except for cloud 5, which is displayed in more 
detail in Figure 4 above). [Image generated by the authors.] 
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η
adj
2 * 100 = dϕθα  is the proportion in which the variable (z

i
)

φθα
 

of cloud N is statistically explained by the least-squares cor-
relation between (z

i
)

φθα
 and (x

i
, y

i
)

φθα
. In other words, this value 

d
φθα

 indicates the percentage of the variable (z
i
)

φθα
 of cloud N 

which is statistically explained by the corresponding regres-
sion surface Γ

φθα
. Namely, d

φθα
 is a statistical measurement of 

how well the regression paraboloid Γ
φθα

 fits N. 

2.3.  Best fit 

Using a calculation software that we created with C++, we 
repeat all the above calculations for each triplet (φ, θ, α) ∈ [0, 
π) × [0, π) × [0, π). The three amplitudes vary in a discrete 
manner –not in a continuous manner–, with successive incre-
ments of 0.005 radians. Therefore, we repeat the calculation 
6253 = 244140625  times. Each triplet (φ, θ, α) corresponds to 
one of the 6253 references ℛ

φθα
, which are the rotations of the 

initial reference ℛ′. For each rotation we obtain the surface 
Γ

φθα
, which has its own statistical fit measurement d

φθα
. We 

calculate the maximum value of the 6253 fit measurements 
d

φθα
. This maximum value is obtained for certain values φ

δ
, θ

δ
 

and α
δ
, and we call it δ = dϕδ θδ αδ

. 

Having determined this maximum value δ, we obtain 
the hyperbolic paraboloid which in reference system 

Rϕδ θδαδ
= O; 


e
1ϕδ  θδαδ

, 

e
2ϕδ  θδαδ

, 

e
3ϕδ  θδαδ

{ } = O; e1δ , e2δ , e3δ{ } is de-

scribed by the equation 0 = Bϕδ θδαδ
x2 +Cϕδ θδαδ

y2 +Hϕδ θδαδ
x + Iϕδ θδαδ

y + Jϕδ θδαδ
z + 1⇔ 0 = Bδ x

2 +Cδy
2 +Hδ x + Iδy + Jδz + 1 

0 = Bϕδ θδαδ
x2 +Cϕδ θδαδ

y2 +Hϕδ θδαδ
x + Iϕδ θδαδ

y + Jϕδ θδαδ
z + 1⇔ 0 = Bδ x

2 +Cδy
2 +Hδ x + Iδy + Jδz + 1

and which corresponds to this maximum δ. This is the hy-
perbolic paraboloid which statistically best fits the cloud N; 
we will refer to this hyperbolic paraboloid as Γ

δ
, we will refer 

to this reference system as Rδ = Rϕδ θδαδ
, and the coordinates 

determined by ℛ
δ
 are noted as (x, y, z)

δ
. The results for vaults 

5 and 7 are displayed graphically in Figures 6 and 7, respec-
tively. 

However, these coordinates (x, y, z)
δ
 of the system 

Rδ = O; 

e
1δ , 

e
2δ ,  

e
3δ{ }, as well as the equation 0 = Bδ x

2 +Cδy
2 +Hδ x + Iδy + Jδ z + 1

0 = Bδ x
2 +Cδy

2 +Hδ x + Iδy + Jδ z + 1, are not intrinsic parameters of Γ
δ
 be-

cause they depend on the initial 3D orthonormal coordinate 

system ′R = O; 

u
1
, 

u
2
, 

u
3{ }  of the scanning device. 

The origin O of the coordinate system ℛ
δ
 is translated to the 

vertex V
δ
 of Γ

δ 
. Thus, we obtain the orthonormal coordinate 

system RΓδ
= Vδ ; 


e
1δ ,  

e
2δ ,  

e
3δ{ }. In order to do this translation, 

it must be borne in mind that the coordinates of V
δ
 are [12]: 

	

Vδ = −
Hδ

2Bδ
, −
Iδ
2Cδ

, 
(Iδ )

2

4Cδ Jδ
+
(Hδ )

2

4Bδ Jδ
− 1
Jδ

⎛

⎝
⎜

⎞

⎠
⎟
δ 	

[12]

 

In the system RΓδ
= Vδ ; 


e
1δ , 

e
2δ , 

e
3δ{ } we have the coordinates 

x , y, z( )Γδ

, such that Vδ = 0, 0, 0( )Γδ
 and the equation for 

surface Γd is either [13]: 

 

Γδ ≡ x2

(aδ )
2
− y

2

(bδ )
2
= 2z or Γδ ≡ − x

2

(aδ )
2
+ y

2

(bδ )
2
= 2z

	
[13]

 

With regard to calculations, the reader must take into ac-

count that (aδ )
2 =
Jδ
2Bδ

 and (bδ )
2 =
Jδ
2Cδ

. 

This regression surface, Г
φθα

, described by Eq. [7] in the ref-
erence system ℛ

φθα
, is the one which best fits the point cloud 

N = P
i{ }

i =  1

i =  n , minimizing the sum of the quadratic residues 

ε
i
2 =

i=1

i=n∑ Bx
i
2 +Cy

i
2 +Hx

i
+ Iy

i
+ Jz

i
+ 1( )2i=1

i=n∑ , being B
φθα

C
φθα 

< 0. 

Eqs. [8] below are the Gauss normal equations which provide 
the solution to the calculation problem of Г

φθα
. This equa-

tions have a range of variation 1–n in Einstein summation 

convention, being 1
i
 = 1. For example, x

i
2y
i
= x

i
2y
ii=1

i=n∑ , and 

1
i
x
i
3 = x

i
3

i=1

i=n∑ .

 

1
i
x
i
4 x

i
2y
i
2 1

i
x
i
3 x

i
2y
i
x
i
2z
i

x
i
2y
i
2 1

i
y
i
4 y

i
2x
i
1
i
y
i
3 y

i
2z
i

1
i
x
i
3 y

i
2x
i
1
i
x
i
2 x

i
y
i
x
i
z
i

x
i
2y
i
1
i
y
i
3 x

i
y
i
1
i
y
i
2 y

i
z
i

x
i
2z
i
y
i
2z
i
x
i
z
i
y
i
z
i
1
i
z
i
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

B
C
H
I
J

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

−1
i
x
i
2

−1
i
y
i
2

−1
i
x
i

−1
i
y
i

−1
i
z
i

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

	

[8]

Remark: Formula [7] is the reason why we rotate the system ℛ′ 
when φ, θ and α change, thus obtaining the system ℛ

φθα
. It is 

not true that the equation of any hyperbolic paraboloid in sys-
tem ℛ′ takes the form 0 = Bx′2 + Cy′2 + Hx′ + Iy′ + Jz′ + 1. Actu-
ally, the equation of the hyperbolic paraboloid Γ

δ
 which best fits 

the cloud N generated by the vault in system ℛ′ takes the form 
0 = Bx′2 + Cy′2 + Dz′2 + Ex′y′ + Fx′z′ + Gy′z′ + Hx′ + Iy′ + Jz′ + 1,  
where 0 = −CF2 + FGE − BG2 − DE2 + 4BCD and where  
0 < F2I2 − 4CF2 − 2FGHI + 4FGE + 4CFHJ − 2FJEI + G2H2 −  
− 4BG2 − 2GHJE + 4BGJI − 4CDH2 + 4DHEI + J2E2 − 4BCJ2 −  
− 4DE2 − 4BDI2 + 16BCD. Nonetheless, what matters here is 
not the equation for Γ

δ
, but the paraboloid Γ

δ
 itself. Therefore, 

instead of finding Γ
δ
 in the system ℛ′, we do as follows: First, 

we find the hyperbolic paraboloid Γ
φθα

 which fits cloud N such 
that the equation of this hyperbolic paraboloid in the system 
ℛ

φθα
 takes the form [7]; and then, as we will see in sections 2.2 

and 2.3, we vary the angle distances φ, θ and α until we find the 
hyperbolic paraboloid Γ

φθα
 which best fits the cloud N. 

2.2.  Statistical fit measurement 

Next we will calculate to what extent that surface statistically 
explains the cloud N. For these calculations, we will use cor-
relation ratio η2, see Eq. [9]:

	

η2 = 1 − i=1

i=n

∑ z
i
− f x

i
, y

i( )( )2

i=1

i=n

∑ z
i
−Y( )2

  	

[9]

 

where Y = 1
n

z
ii=1

i=n∑ , and where (x
i
, y

i
, f(x

i
, x

i
))

φθα
 are the co-

ordinates of a point of the corresponding regression surface 
Г

φθα
; that is [10]:  

	
f x

i
, y

i( ) = −1
J

Bx
i
2 + Cy

i
2 + Hx

i
+ Iy

i
+ 1( )

 	
[10]

 

Adjusted coefficient η
adj
2  is given by Eq. [11]: 

	
η
adj
2 = 1 − 1 −η2( )⎡

⎣
⎤
⎦
n − 1
n − d

1
− 1

	
[11]

 

where d
1
 = 5 is the number of parameters of the regression 

surface. We know that η
adj
2 ∈ 0,1⎡⎣ ⎤⎦  in all cases, and the value 
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we start with a director parabola p
d
 (on a plane σ

d
, with focal 

point F
d
, major axis x

d
 and straight directrix r

d
) and a generat-

ing parabola p
g
 (on a plane σ

g
, with focal point F

g
, major axis x

g
 

and straight directrix r
g
). The results for vaults 5 and 7 are dis-

played graphically in Figures 6 and 7, respectively. Both parab-
olas have the same vertex V and the same major axis x

d 
= x

g
, but 

the plane σ
d
 is orthogonal to the plane σ

g
 and the vertex V is lo-

cated between both focal points F
d  

− V − F
g
. We dynamically 

slide the generating parabola p
g
 on the director parabola with a 

continuous movement, such that the sliding of the generating 
parabola p

g
 keeps the vertex on the director parabola p

d
. This 

sliding is parallel to plane σ
g
. This movement geometrically 

generates the hyperbolic paraboloid H. The director parabola 
has the parameter k

d
 and the generating parabola has the pa-

rameter k
g
. Parameter k

d
 is the distance between the focal point 

F
d
 and the straight directrix r

d
, and parameter k

g
 is the distance 

between the focal point F
g
 and the straight directrix r

g
. 

Lastly, in order to understand the equation [15] it should be 
noted that, by normalizing the distances so that k

d 
= 1 and 

k
d 
≤ k

g
, in the case of the hyperbolic paraboloid Γ

δ
 we find that 

k
g 
= b2. Furthermore, owing to the aforementioned changes of 

reference system, the equation of surface Γ
δ
 reduces to Eq. [15].

 
However, there is another numerical parameter which is intrin-
sic to Γd 

, since it is determined by the geometry of this surface. 
In order to understand this parameter, the following has to be 
taken into account: After generating a hyperbolic paraboloid 
H, the vertex V of the director parabola p

d
 and the generating 

parabola p
g
 becomes the vertex of H. The major axis x

d 
= x

g
 of 

the parabolas is perpendicular to the plane tangent to H in V. 
We call this tangential plane σ

V
. The intersection of σ

V
 and H 

consists of two straight lines which we call s
1
 and s

2
 (Figures 6 

and 7). These straight lines s
1
 and s

2
 (both included in H, which 

is a ruled surface), plus the major axis x
d 

= x
g
, determine the 

planes π
1
 and π

2
, respectively. These planes π

1
 and π

2
 (which, as 

has just been said, intersect in the axis x
d 
= x

g
 of the hyperbolic 

paraboloid H) are the so-called director planes of H, and the 
straight lines s

1
 and s

2
 are the so-called straight directrices of H. 

These director planes have the following geometric trait: 
through every point in H there are two straight lines which 
lie on H and generate the ruled surface H, such that one line 
of that pair is parallel to a director plane and the other line 
is parallel to the other director plane. The angles of the dihe-

In the event that Γδ ≡ − x
2

(aδ )
2
+ y

2

(bδ )
2
= 2z , we would use 

RΓδ

− = Vδ ;

e
1δ , 

e
2δ ,−

e
3δ{ } as the reference system; in this case 

the equation of the surface Γd is 
x2

(aδ )
2
− y

2

(bδ )
2
= 2z . In the 

event that (aδ )
2 > (bδ )

2  we would use RΓδ

× = Vδ ; 

e
2δ , 

e
1δ , 

e
3δ{ } 

as the reference system in order to ensure that (aδ )
2 < (bδ )

2  

in the equation Γδ ≡ x2

(aδ )
2
− y

2

(bδ )
2
= 2z. Hereinafter, the 

coordinate system RΓδ
orRΓδ

− orRΓδ

×  (where the equation 

of surface Γd is the one described above) is called system 

R' = Vδ ; 

v
1
, 

v
2
,

v
3{ }.

Nonetheless, the parameters aδ , bδ , are not intrinsic param-
eters of the surface Γd yet, because they still depend on the in-

itial 3D orthonormal coordinate system ′R = O; 

u
1
, 

u

2
,  

u
3{ }  

of the scanning device. Therefore, we create the orthonormal 

coordinate system SΓδ
 = Vδ ; 


u
1δ , 

u
2δ ,  

u
3δ{ } such that [14]. 

	


u
1δ =

v

1
, 

u
1δ =

v

2
, 

u
3δ = (aδ )

2 v
3	

[14]
 

In this system SΓδ
= Vδ ; 


u
1δ , 

u
2δ ,  

u
3δ{ }, points have coordi-

nates (x, y, x), such that Vδ = 0, 0, 0( )  and the equation of 

the surface Γd is as follows [15]: 

	
Γδ ≡ x2 − y

2

b2
= 2z

	
[15]

The parameter b2 =
(bδ )

2

(aδ )
2
=
Bδ
Cδ

 is greater than or equal to 1, 

and now it is an intrinsic parameter of the surface Γd. Equa-
tion [15] is an intrinsic equation of Γd –it is the normalized 
equation of this surface.

2.4. G eometric elements 

In order to geometrically understand the normalized Eq. [15], 
the following has to be taken into account: In order to geometri-
cally and dynamically generate any hyperbolic paraboloid H, 

Figure 6.  The cloud N of vault number 5 is highlighted in orange, and its best-fitting hyperbolic paraboloid Γ
δ
 is highlighted in 

yellow. The straight directrices s
1
 and s

2
 are shown in green; the axes are shown in red; the director parabola p

d
 and the generating 

parabola p
g
 are shown in blue. [Image generated by the authors.] 
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We have applied this method to the point clouds outlining the 
surface contours of the 19 vaults in the entrance porch to the 
crypt of Colònia Güell. 

We have applied the above described geometric process in 
order to provide a normalized intrinsic analytic equation 

Γδ ≡ x2 − y
2

b2
= 2z  [15] for the best-fitting hyperbolic parabo-

loid Γ
δ
, and we have determined its two intrinsic parameters 

α and b2. 

Table 2 below shows the results for the 19 vaults of the en-
trance porch (α is expressed in sexagesimal degrees).

4.  Conclusions 

In the introduction to this paper we said that, when talking 
about the architectural composition and morphology of the 
entrance porch to the crypt of Colònia Güell, it is commonly 

dral formed by the director planes π
1
 and π

2
 have the same 

width as the angles formed by the straight directrices s
1
 and 

s
2
. The results for vaults 5 and 7 are displayed graphically in 

Figures 6 and 7, respectively. If the width of the acute angles 
is known, then the width of the obtuse angles is also known. 
Hereinafter, the width of the acute angles is called α.  

The numerical parameter α is intrinsic to H. In the case of 
the hyperbolic paraboloid Γ

δ
, we have the following analytic 

formulas for the numerical calculation of α [16-19]: 

m
1
= −4Cδ + Iδ( )2 − 4BδCδ − 4CδHδ − 4Cδ Jδ

(Iδ )
2

4Cδ Jδ
+
(Hδ )

2

4Bδ Jδ
− 1
Jδ

⎛

⎝
⎜

⎞

⎠
⎟

	

[16]

	

m
2
= 1 +

Hδ

2Bδ

⎛

⎝⎜
⎞

⎠⎟

2

+
m
1
− Iδ
2Cδ

+
Iδ
2Cδ

⎛

⎝⎜
⎞

⎠⎟
−m

1
− Iδ

2Cδ

+
Iδ
2Cδ

⎛

⎝⎜
⎞

⎠⎟ 	
[17]

m
3
= 1 +

Hδ

2Bδ

⎛

⎝⎜
⎞

⎠⎟

2

+
m
1
− Iδ
2Cδ

+
Iδ
2Cδ

⎛

⎝⎜
⎞

⎠⎟

2

1 +
Hδ

2Bδ

⎛

⎝⎜
⎞

⎠⎟

2

+
−m

1
− Iδ

2Cδ

+
Iδ
2Cδ

⎛

⎝⎜
⎞

⎠⎟

2

	

[18]

	

α = acos
m
2

m
3

⎛

⎝
⎜

⎞

⎠
⎟  if 
m
2

m
3

≥ 0, α = π − acos
m
2

m
3

⎛

⎝
⎜

⎞

⎠
⎟  if 
m
2

m
3

< 0
	

[19]

The statistical concepts used in this paper, such as the cor-
relation ratio in [9] and the adjusted coefficient in [11], can 
be found in several books, for instance, in the well-known 
references (12, pp: 264-265; 13, pp: 584-585). The numeri-
cal concepts of the Gauss normal equations can be found, for 
instance, in the famous reference (14, pp: 671-675). The clas-
sification and analysis of quadratic surfaces can be found in 
many modern books, such as (15, pp: 559-592), and also in 
old books, such as the classic reference (16, pp: 200-205). 

3. R esults 

In the previous section we have provided a mathematical 
process to objectively determine which is the hyperbolic pa-

raboloid Γ
δ
 which best fits a point cloud N = P

i{ }
i=1

i=n
, and we 

have also provided an objective statistical measurement δ of 
that fit.  

Figure 7.  The cloud N of vault number 7 is highlighted in orange, and its best-fitting hyperbolic paraboloid Γ
δ
 is highlighted in 

yellow. The straight directrices s
1
 and s

2
 are shown in green; the axes are shown in red; the director parabola p

d
 and the generating 

parabola p
g
 are shown in blue. [Image generated by the authors.] 

Table 2.  Results for the 19 vaults of the entrance porch (α is 
expressed in sexagesimal degrees). 

δ α b2

  1 99.67 0.39 88270.61 

  2 99.86 75.30 1.68 

  3 99.73 0.82 19700.29 

  4 99.85 0.90 16377.77 

  5 99.71 89.40 1.02 

  6 99.95 60.10 2.99 

  7 99.76 85.08 1.19 

  8 97.92 15.90 51.27 

  9 97.64 0.21 284071.32 

10 98.85 1.37 7023.60 

11 97.59 0.04 8108811.54 

12 99.70 0.06 3462399.46 

13 99.46 0.03 11083400.45 

14 99.42 0.43 71687.29 

15 99.16 0.16 531535.10 

16 99.58 0.54 45211.87 

17 98.36 7.89 210.34 

18 99.86 0.21 307243.25 

19 99.16 0.01 173306546.50 
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The above paragraph has the following meaning: Even if 
the architect had wanted to create paraboloids, the fact is 
that none of the surfaces generated by the 19 fragments of 
vaults actually are paraboloids. This is so for several rea-
sons: building errors, materials deformations, mechanical 
settlements, etc. Nevertheless, maybe some of them were 
designed in the shape of hyperbolic paraboloids. In other 
words: the vault may have been built using a centering 
made up of straight beams which are parallel to a given di-
rector plane and rest on another straight beam (i.e., the def-
inition of a hyperbolic paraboloid using its generatrices). In 
this case, we say that the vault was designed in the shape 
of a hyperbolic paraboloid. But it is also possible that the 
vault was not built in that way. Namely: perhaps the vault 
was not built using a centering as described above. In this 
case, we say that the vault was not designed in the shape 
of a hyperbolic paraboloid. We do not know how each of 
these vaults was built, so we do not know if each vault was 
or wasn’t designed in the shape of a hyperbolic paraboloid. 
Therefore, we only say whether we have or we don’t have 
enough statistical evidence of that. 

With regard to the decorative crosses that are present in 13 
of the 19 vaults, we find that they do not follow the straight 
directrices of the hyperbolic paraboloids generated by these 
vaults. As an example, we show the location of the cross and 
the straight directrices for vault number 5 (Figure 8). 

It is clear that our working method –a mixture of statistics, 
geometry and numerical calculation– was never in the mind 
of Gaudí. However, it is not our intention to present a his-
torical topic. Using the mathematical tools available to us, we 
intend to show the readers another point of view for studying 
this historical heritage.

claimed that all of its 19 vaults were designed in the shape 
of hyperbolic paraboloids. Besides, 13 of these surfaces are 
decorated with coloured ceramic crosses which allegedly fol-
low the straight directrices of these hyperbolic paraboloids.  

Using photogrammetrical techniques, we obtained the point 
cloud outlining the surface contour of a vault in the entrance 
porch to the crypt of Colònia Güell. In section 2 of this paper 
we outline the method used to find the hyperbolic parabo-

loid Γ
δ
 which best fits this point cloud N = P

i{ }
i=1

i=n
. Besides, 

we have developed a fit measurement model and found a 
measurement δ of how well the hyperbolic paraboloid Γ

δ
 

fits the cloud N. Also, we have laid down the necessary cal-
culations to find the intrinsic normalized equation and the 
intrinsic geometric parameters α and b2 of the hyperbolic 
paraboloid Γ

δ
.  

After carrying out these calculations, we present the intrin-
sic normalized equations of the 19 hyperbolic paraboloids 
Γ

δ
 which best fit the 19 vaults of the porch (see Section 3 

Results). We also provide the corresponding statistical fit 
measurement δ of each hyperbolic paraboloid Γ

δ
 for each 

vault; and in Table 2 we display the geometric parameters 
α and b2 which are intrinsic to each of the 19 hyperbolic pa-
raboloids Γ

δ
.  

As a consequence of all this geometric calculation process, 
we conclude that 1) there is insufficient statistical evidence 
that vaults number 8, 9, 10, 11 and 17 were designed based 
on hyperbolic paraboloids (since their corresponding fit 
measurements δ are below 99%); and 2) there is sufficient 
statistical evidence (fit measurement above 99%) that the 
remaining fourteen vaults were designed based on hyper-
bolic paraboloids. 
 

Figure 8.  The ceramic cross of vault number 5 and, in green color, the straight directrices of the best-fitting hyperbolic paraboloid Γ
δ
. 

[Image generated by the authors.] 
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