Informes de la Construcción, Vol 65, No Extra-1 (2013)

Un hormigón autocompactante eco-amigable con áridos gruesos reciclados


https://doi.org/10.3989/ic.11.138

L. A. Pereira-de Oliveira
University of Beira Interior, Portugal

M. Nepomuceno
University of Beira Interior, Portugal

M. Rangel
University of Beira Interior, Portugal

Resumen


Los usos potenciales de áridos gruesos reciclados en la composición del hormigón autocompactante (SCC) aumenta el valor ecológico y en parte resuelve los problemas de los sitios de disposición de residuos generados por la construcción y la demolición de las estructuras. Por lo tanto, este trabajo presenta un estudio experimental de las propiedades de SCC en el cual los áridos gruesos naturales fueron reemplazados por distintos porcentajes de áridos reciclados, es decir, 0% (SCC), el 10% (SCCR10), el 20% (SCCR20), el 30% (SCCR30) y el 40% (SCCR40). Los resultados del hormigón fresco (propiedades reológicas y la auto-compactación), como las propiedades de hormigón endurecido (resistencia a la compresión, densidad y módulo de elasticidad dinámico), muestran sólo pequeñas discrepancias. Desde el punto de vista del comportamiento mecánico, los resultados confirman la viabilidad de incorporar áridos gruesos reciclados en los SCC demostrando el carácter conservador de los límites actualmente recomendados.

Palabras clave


Hormigón autocompactante; árido grueso reciclado; propiedades reológicas; hormigón sostenible

Texto completo:


PDF

Referencias


(1) Poon, C.S., Shui, Z.H., Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18(6): 461-468.

(2) Etxeberria, M., Vázquez, E., Marí, A. (2006). Microstructure analysis of hardened recycled aggregate concrete. Magazine of Concrete Research, 58(10): 683-690.

(3) Angulo, S.C., Ulsen, C., John, V.M., Kahn, H., Cincotto, M.A. (2009). Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil. Waste Management, 29(2): 721-730.

(4) Alaejos, P. G., Sanchez, M. J. (2004). Utilization of recycled concrete aggregate for structural concrete. In: Vazquez, E. et al (eds) International Rilem conference on the use of recycled materials in building and structures, vol 2, Elsevier, Amsterdam.

(5) Poon, C. S., Shui, Z. H, Lam, L., Fok, H., Kou, S. C. (2004). Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement Concrete Research, 34(1): 31-36.

(6) Levy, S. M., Helene, P. (2004). Durability of recycled aggregates concrete: a safe way to sustainable development. Cement Concrete Research, 34(11): 1975-1980.

(7) Sagoe-Crentsil, K. K., Brown, T., Taylor, A. H. (2001). Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cement Concrete Research, 31(5): 707-712.

(8) Kou, S. C., Poon, C. S. (2009). Properties of Self-compacting Concrete Prepared with Coarse and Fine Recycled Concrete Aggregates. Cement & Concrete Composites, 31(9): 622-627.

(9) Limbachiya, M., Leelawat, T., Dhir R. (2000). Use of recycled concrete aggregate in high-strength concrete. Materials and Structures, 33(9): 574-580, RILEM.

(10) Chakradhara, R. M., Bhattacharyya, S. K., Barai, S.V. (2011). Behaviour of recycled aggregate concrete under drop weight impact load. Construction and Building Materials, 25(1): 69-80.

(11) Tabsh, S. W., Abdelfatah, A. S. (2009). Influence of recycled concrete aggregates on strength properties of concrete. Constr Build Mater, 23(2): 1163-1167.

(12) Zhang, X. B., Deng, S. C., Qin, Y. H. (2007). Additional adsorbed water in recycled concrete. Journal of Central South University of Technology, 14(1) Supplement: 449-453.

(13) Cabral, A. E. B., Schalch, V., Dal Molin, D. C. C., Ribeiro, J. L. D. (2010). Mechanical properties modelling of recycled aggregate concrete. Construction and Building Materials, 24: 421-430.

(14) Eguchi, K., Teranishi,K., Nakagome, A., Kishimoto, H., Shinozaki, K., Narikawa, M. (2007). Application of recycled coarse aggregate by mixture to concrete construction. Construction and Building Materials, 21(7): 1542-1551.

(15) Kou, S. C., Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35: 69-76.

(16) Li, X. (2008 ). Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycled aggregate concrete. Resources, Conservation and Recycling, 53(1): 36-44.

(17) Lovato, P. S., Possan, E., Dal Molin, D. C. C., Masuero, A. B., Ribeiro, J. L. D. (2012). Modelling of mechanical properties and durability of recycled aggregate concretes. Construction and Building Materials, 26(1): 437-447.

(18) Kou, S. C., Poon, S. C., Wan, H. W. (2012). Properties of concrete prepared with lowgrade recycled aggregates. Construction and Building Materials, 36: 881-889.

(19) Corinaldesi, V. (2010). Mechanical and elastic behaviour of concretes made of recycledconcrete coarse aggregates. Construction and Building Materials, 24(9): 1616-1620.

(20) Laboratório Nacional de Engenharia Civil. (2006). Guide for the use of recycled coarse aggregates in concrete (in Portuguese), LNEC E 471, 7 p. Lisbon.

(21) Grdic, Z. J., Toplicic-Curcic, G. A., Despotovic, I. M., Ristic, N. S. (2010). Properties of self-compacting concrete prepared with coarse recycled concrete aggregate. Construction and Building Materials, 24(7): 1129-1133.

(22) Okamura, H., Ozawa, K., Ouchi, M. (2000). Self-compacting concrete. Struct Concr J FIB, 1(1): 3-17.

(23) Ouchi,M., Hibino, M., Ozawa, K., Okamura, H. (1998). A rational mix-design method for mortar in self-compacting concrete. In: Proceedings of the sixth east-asia pacific conference on structural engineering & construction, p. 1307-1312. Taiwan.

(24) Domone, P. (2000). Mix design, self-compacting concrete: state-of-the-art report of RILEM technical committee 174-SCC. RILEM, p. 49-65.

(25) Sedran, T., Larrard, F. (September 1999). Optimization of self-compacting concrete thanks to packing model. In: 1st International RILEM symposium on SCC, p. 321-332. Sweden.

(26) Petersson, O., Billberg, P. (September 1999). Investigation on blocking of self-compacting concrete with different maximum aggregate size and use of viscosity agent instead of filler. In: Proceedings of the 1st international RILEM symposium on SCC, p. 333-344. Sweden.

(27) Petersson, O., Billberg, P., Bui, V. (June 1996). A model for self-compacting concrete. In: Proceedings of RILEM international conference on production methods and workability of fresh concrete, p. 484-492. Paisley, London.

(28) Tangtermsirikul, S., Bui, V. (December 1995). Blocking criteria for aggregate phase of selfcompacting high-performance concrete. In: Proceedings of regional symposium on infrastructure development in civil thailand engineering, p. 58-69. Bangkok.

(29) Bui, V., Montgomery, D. (September 1999). Mixture proportioning method for self-compacting high performance concrete with minimum paste volume. In: Proceedings of the 1st international RILEM symposium on SCC, p. 373-384. Sweden.

(30) Sonebi, M. (2004). Medium strength self-compacting concrete containing fly ash: modelling using factorial experimental plans. Cement and Concrete Research, 34(7): 1199-1208.

(31) Nepomuceno, M. (March 2006 ). Methodology for self-compacting concrete mix-design (PhD thesis). Covilhã, Portugal: University of Beira Interior. (in Portuguese).

(32) Zaharieva, R., Buyle-Bodin, F., Skoczylas, F., Wirquin, E. (2003). Assessment of the surface permeation properties of recycled aggregate concrete. Cement & Concrete Composites, 25(2): 223-232.

(33) Gomez-Soberón, J. M. V. (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cement and Concrete Research, 32(8): 1301-1311.

(34) Sani, D., Moriconi, G., Fava, G., Corinaldesi, V. (2005). Leaching and mechanical behaviour of concrete manufactured with recycled aggregates. Waste Management, 25(2): 177-182.

(35) Elsharief, A., Cohen, M. D., Olek, J. (2005). Influence of lightweight aggregate on the microstructure and durability of mortar. Cement and Concrete Research, 35(7): 1368-1376.

(36) Punkki, J., Gjbrv, O. E. (1995). Effect of water absorption by aggregate on properties of high-strength lightweight concrete. in: I. Holand (Ed.), International Symposium on Structural Lightweight Aggregate Concrete, pp. 604-616. Norwegian Concrete Association, Sandfjord.

(37) Punkki J, Gjbrv O. E, Monteiro P. J, “Microstructure of high-strength lightweight aggregate concrete”. in: F. de-Larrard, R. Lacroix (Eds.), 4th Int. Symposium on Utilization of High-strength/High-performance Concrete, F. Presses de 1’ENPC, Paris, France, 1996, pp. 1281– 1287.

(38) Nepomuceno, M., Pereira de Oliveira, L. A., Lopes, S. M. R. (2012). Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Construction and Building Materials, 26(1): 317-326.

(39) European Committee for Standardization. Concrete. Additional rules for self-compacting concrete (SCC), EN 206-9: 2010.

(40) European Committee for Standardization. Testing Fresh Concrete, part 8: Self Compacting Concrete - Slump-" ow test, EN 12350-8: 2010.

(41) European Committee for Standardization. Testing Fresh Concrete, part 9: Self Compacting Concrete - V-funnel test, EN 12350-9: 2010.

(42) European Committee for Standardization. Testing Fresh Concrete, part 10: Self Compacting Concrete - L box test, EN 12350-10: 2010.

(43) European Committee for Standardization. Testing hardened concrete - Part 7: Density of hardened concrete, EN 12390-7: 2003

(44) European Committee for Standardization. Testing hardened concrete - Part 3: Compressive strength of test specimens, EN 12390-3: 2003.

(45) British Standard. Testing concrete -Part 203: Recommendations for measurement of velocity of ultrasonic pulses in concrete, BS 1881-203: 1986.

(46) European Committee for Standardization. Eurocode 2: Design of concrete structures-Part 1-1: general rules and rules for buildings, EN 1992-1-1: 2004, 225p.

(47) Vila, M. F. C. (2011). Durability of self compacting concrete produced with recycled aggregates from construction and demolition wastes (Master Thesis). Covilhã, Portugal: University of Beira Interior, 71p. (in Portuguese).

(48) Gonilho-Pereira, C. N. (2005). Study about the influence of different types of aggregates in the structural concrete: durability and interface zone (Master Thesis). Covilhã, Portugal: University of Beira Interior, 168 p.

(49) Pereira-de Oliveira, L. A., Castro-Gomes, J. P, Gonilho-Pereira, C. N. (2006). Study of sorptivity of self compacting concrete with mineral additions. Journal of Civil Engineering and Management, 12(3): 215-220. ISSN 1392-3730.




Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es