Informes de la Construcción, Vol 65, No 532 (2013)

Aspectos económicos de un sistema de aislamiento sísmico de base para bastidores de acero en altura


https://doi.org/10.3989/ic.12.067

V. Kilar
University of Ljubljana, Eslovenia

S. Petrovčič
University of Ljubljana, Eslovenia

S. Šilih
University of Maribor, Eslovenia

D. Koren
University of Ljubljana, Eslovenia

Resumen


El presente artículo trata sobre los efectos y costes de implementación de un sistema de aislamiento en cimentación para la mitigación del riesgo sísmico de la estructura de un bastidor de acero en altura prexistente. Se han analizado diferentes distribuciones realistas de la masa contribuyente y de los niveles de ocupación, conformando diferentes variantes asimétricas en planta. Se presentan los resultados obtenidos mediante el método N2 (análisis estático incremental no lineal) como envolventes de las plantas superiores y como patrones de deterioro en estado plástico. En el estudio de costos presentado, el coste de implementación del sistema de aislamiento propuesto se compara con los costes estimados de reparación de los elementos superestructurales y los costes derivados del período de desocupación. Los resultados muestran que, en general, el aislamiento en la base no resulta viable económicamente para movimientos de baja intensidad, pero puede ser muy beneficioso en el caso de intensidades moderadas y altas, particularmente cuando el período de desocupación es tenido en cuenta.

Palabras clave


Estructuras de bastidores; comportamiento sísmico; aislamiento en cimentación; eficiencia de costes; excentricidad de masas; análisis estático incremental

Texto completo:


PDF

Referencias


(1) Aguirre, C. (2005). Seismic behavior of rack structures. Journal of Constructional Steel Research, 61(5): 607-624. http://dx.doi.org/10.1016/j.jcsr.2004.10.001

(2) Filiatrault, A., Higgins, P. S., Wanitkorkul, A., Courtwright, J. A., Michael, R. (2008). Experimental seismic response of base isolated pallet-type steel storage racks. Earthquake Spectra, 24(3): 617-639. http://dx.doi.org/10.1193/1.2942375

(3) Freitas, A. M. S., Souza, F. T., Freitas, S. R. (2010). Analysis and behavior of steel storage drive-in racks. Thin-Walled Structures, 48(2): 110-117. http://dx.doi.org/10.1016/j.tws.2009.09.003

(4) Bernuzzi, C., Castiglioni, C. A. (2001). Experimental analysis on the cyclic behaviour of beam-to-column joints in steel storage pallet racks. Thin-Walled Structures, 39(10): 841-859. http://dx.doi.org/10.1016/S0263-8231(01)00034-9

(5) Bajoria, K. M., Sangle, K. K., Talicotti, R. S. (2010). Modal analysis of cold-formed pallet rack structures with semi-rigid connections. Journal of Constructional Steel Research, 66(3): 428-441. http://dx.doi.org/10.1016/j.jcsr.2009.10.005

(6) Affolter, C., Piskoty, G., Wullschleger, L., Weisse, B. (2009). Collapse of a high storage rack. Engineering Failure Analysis, 16(6): 1846-1855. http://dx.doi.org/10.1016/j.engfailanal.2008.09.011

(7) Sideris, P., Filiatrault, A., Leclerc, M., Tremblay, R. (2009). Experimental investigation on the seismic behavior of palletized merchandise in steel storage racks. Earthquake Spectra, 26(1): 209-233. http://dx.doi.org/10.1193/1.3283389

(8) CEN: Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, EN 1998-1. European Committee for Standardization, Brussels, 2005.

(9) Azagra, D., Bernabeu Larena, A. (2012). The structure of free-forms. lnformes de la Construcción, 64(526): 133-142.

(10) Kilar, V., Koren, D. (2008). Seismic behaviour of asymmetric base isolated structures with various distributions of isolators. Engineering Structures, 31(4): 910-921. http://dx.doi.org/10.1016/j.engstruct.2008.12.006

(11) Koren, D., Kilar, V. (2011). The applicability of the N2 method to the estimation of torsional effects in asymmetric base-isolated structures. Earthquake Engineering and Structural Dynamics, 40(8): 867-886. http://dx.doi.org/10.1002/eqe.1064

(12) Petrovčič, S., Kilar, V. (2012). Effects of horizontal and vertical mass-asymmetric distributions on the seismic response of a high-rack steel structure. Advances in Structural Engineering, 15(11): 1977-1988. http://dx.doi.org/10.1260/1369-4332.15.11.1977

(13) Skinner, R. I., Robinson, W. H., McVerry, G. H. (1993). An Introduction to seismic isolation. John Wiley&Sons. Chichester, England.

(14) Mezzi, M., Comodini, F., Rossi, L. (2011). A base isolation option for the full seismic protection of an existing masonry school building. Proc. 13th International Conf. on Civil, Structural Engineering Computing. Civil-Comp Press. Stirlingshire, Scotland.

(15) Montanaro, M. I. (2002). Sistemas de control de vibraciones en estructuras de gran altura. lnformes de la Construcción, 53(447): 31-39.

(16) FEM (2005). Recommendations for the design of static steel pallet racks under seismic conditions - prFEM 10.2.08. European Racking Federation, Birmingham.

(17) CEN: Eurocode 3 (2005). Design of steel structures - Part 1-1: General structural rules, EN 1993-1-1. European Committee for Standardization, Brussels.

(18) FIP Industriale (2012). Catalogue on SI Elastomeric Isolators. (available online: http://www.fip-group.it/fip_ind_eng/prodotti.html).

(19) CSI. (2008). SAP2000 (v12.0.1) - Linear and nonlinear static and dynamic analysis and design of three-dimensional structures, Computer & Structures. Inc., Berkeley.

(20) FEMA (2000). Prestandard and commentary for the seismic rehabilitation of buildings. FEMA-356. Federal Emergency Management Agency, Washington, DC.

(21) Kim, H.-D., Lee, M.-J. (2010). Analytical investigation of the P-Δ effect of middle-rise unbraced steel frames. International Journal of Steel Structures, 10(3): 221-232. http://dx.doi.org/10.1007/BF03215832

(22) Kang, C.-K., Choi, B.-J. (2011). New approach to evaluate the response modification factors for steel moment resisting frames. International Journal of Steel Structures, 11(3): 275-286. http://dx.doi.org/10.1007/s13296-011-3003-1

(23) Kilar, V., Petrovčič, S., Koren, D., Šilih, S. (2011). Seismic analysis of an asymmetric fixed base and base-isolated high-rack steel structure. Engineering Structures, 33(12): 3471-3482. http://dx.doi.org/10.1016/j.engstruct.2011.07.010

(24) Ng, A. L. Y., Beale, R. G., Godley, M. H. R. (2009). Methods of restraining progressive collapse in rack structures. Engineering Structures, 31(7): 1460-1468. http://dx.doi.org/10.1016/j.engstruct.2009.02.029

(25) Fajfar, P. (2000). A nonlinear analysis method for performance-based seismic design. Earthquake Spectra, 16 (3): 573-592. http://dx.doi.org/10.1193/1.1586128

(26) Fajfar, P., Marušić, D., Peruš, I. (2005). Torsional effects in the pushover-based seismic analysis of buildings. Journal of Earthquake Engineering, 9(6): 831-854. http://dx.doi.org/10.1080/13632460509350568

(27) Kilar, V., Koren, D. (2010). Simplified inelastic seismic analysis of base-isolated structures using the N2 method. Earthquake Engineering and Structural Dynamics, 39(9): 967-989.

(28) Structural Engineers Association of Northern California (SEAONC). (1986). Tentative seismic isolation design requirements. SEAONC. San Francisco, California.

(29) Taflanidis, A. A., Beck, J. L. (2009). Life-cycle cost optimal design of passive dissipative devices. Structural Safety, 31(6): 508-522. http://dx.doi.org/10.1016/j.strusafe.2009.06.010

(30) Goda, K., Lee, C. S., Hong, H. P. (2010). Lifecycle cost-benefit analysis of isolated buildings. Structural Safety, 32(1): 52-63. http://dx.doi.org/10.1016/j.strusafe.2009.06.002

(31) Medina, R. A., Krawinkler, H. (2005). Evaluation of drift demands for the seismic performance assessment of frames. Journal of Structural Engineering-ASCE, 131(7): 1003-1013. http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:7(1003)

(32) Krawinkler, H. (2011). Challenges in improving earthquake resilience through performance based earthquake engineering. Bled4 – International Workshop on Performance-Based Seismic Engineering Vision for an Earthquake Resilient Society. Institute for Structural and Earthquake Engineering of the Department of Civil Engineering, University of Ljubljana, Slovenia.

(33) Zareian, F., Krawinkler, H. (2012). Conceptual performance-based seismic design using building-level and story-level decision support system. Earthquake Engineering and Structural Dynamics, 41(11): 1439-1453. http://dx.doi.org/10.1002/eqe.2218

(34) Bruneau, M., Uang, C. M., Whittaker, A. (1998). Ductile design of steel structures. McGraw-Hill. Boston.

(35) Cimellaro, G. P., Reinhorn, A. M., Bruneau, M. (2010). Framework for analytical quantification of disaster resilience. Engineering Structures, 32 (11): 3639-3649. http://dx.doi.org/10.1016/j.engstruct.2010.08.008




Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es