Temperatura de color correlacionada de la luz natural: análisis dinámico en espacios interiores

Autores/as

  • J. M. Monteoliva Instituto de Ciencias Humanas, Sociales y Ambientales, CCT Mendoza - CONICET
  • A. Villalba Instituto de Ciencias Humanas, Sociales y Ambientales, CCT Mendoza - CONICET
  • A. Pattini Instituto de Ciencias Humanas, Sociales y Ambientales, CCT Mendoza - CONICET

DOI:

https://doi.org/10.3989/ic.14.146

Palabras clave:

Luz natural, temperatura de color correlacionada, dispositivos de sombreado, espacios interiores

Resumen


Actualmente los estudios de la iluminación natural focalizan en la amabilidad visual del espacio. Esta nueva tendencia surge de la necesidad de profesionales e investigadores de definir indicadores de la calidad de la iluminación natural. Uno de ellos es la temperatura de color correlacionada (TCC). En este trabajo, se propone analizar la influencia de la orientación de las ventanas y sus sistemas de sombreado en la percepción de color del ambiente (TCC). Para ello se propone una metodología de caracterización dinámica (espacial y temporal) de la TCC de la fuente luz natural. El análisis se desarrolló en un modelo a escala de un espacio interior, bajo condiciones de cielo claro. Los resultados han evidenciado la importancia de la orientación de la ventana en la TCC de un espacio, obteniendo variaciones de hasta el 50 %. De manera complementaria, se detecta la capacidad de modificar la TCC de los ambientes interiores que poseen las superficies vidriadas y los dispositivos de control solar.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Oneworkpalce. (1999). Seeing the difference, the importance of quality lighting in the workplace. Workplace Issues.

(2) Knez, I. (2001). Effects of colour of light on nonvisual psychological processes. Journal of Environmental Psychology, 21(2): 201-208. http://dx.doi.org/10.1006/jevp.2000.0198

(3) Ruck N, Aschehoug O, Aydinli S, Christoffersen J, Courret G, Edmonds I, Jakobiak R, Kischkoweit-Lopin M, Klinger M, Lee E, Michel L, Scartezzini JL, Selkowitz S. (2000). Daylight in buildings. A source book on daylighting systems and components. Berkeley, CA: Lawrence Berkeley National Laboratory-International Energy Agency, Solar Heating and Cooling Programme, SHC, Energy Conservation in buildings and Community Systems Programme.

(4) Veitch, J.A. (1997). Revisiting the performance and mood effects of information about lighting and fluorescent lamp type. Journal of Environmental Psychology, 17(3): 253-262. http://dx.doi.org/10.1006/jevp.1997.0059

(5) Fontoynont, M. (2002). Perceived Performance of Daylighting Systems: Lighting Efficacy and Agreeableness. Solar Energy. 73(2): 83-94. http://dx.doi.org/10.1016/S0038-092X(02)00035-X

(6) Samani, S. A. (2011). The Impact of Indoor on Student's Learning Performance in Learning Environments: A knowledge internalization perspective. International Journal of Business and Social Science, 3(24): 127-136. http://ijbssnet.com/journals/Vol_3_No_24_Special_Issue_December_2012/14.pdf.

(7) Monteoliva, J.M., Villalba, A, Pattini, A (2014). Uso de dispositivo de control solar en aulas: impacto en la simulación dinámica de la iluminación natural. Ambiente Construido, 14(3): 43-58. http://dx.doi.org/10.1590/S1678-86212014000300004

(8) Monteoliva, J.M., Villalba, A., Pattini, A. (2013). Uso de bases climáticas regionales y su impacto en la simulación de la iluminación natural de alta precisión. Revista de Energías Renovables y Medio Ambiente (ERMA), 31: 37-44.

(9) Mott, M., Robinson, D., Walden, A., Burnette, J., Rutherford, A. (2012). Illuminating the Effects of Dynamic Lighting on Student Learning. SAGE Open, (april-june): 1-9. http://dx.doi.org/10.1177/2158244012445585

(10) Lighting Research Center - Rensselaer Polytechnic Institute. (2013). http://www.lrc.rpi.edu/education/learning/terminology/cct.asp.

(11) Löfberg, H.A. (1976). Dagsljus utomhus, grundläggande samband och tillämpning sexempel. Swedish: Byggforskningens informationsblad B 9.

(12) Veitch, J.A., Newsham, G.R. (1998). Lighting quality and energy-efficiency effects on task performance, mood, health, satisfaction and comfort. Journal of Indo-European Studies, 27(1): 107-129. http://dx.doi.org/10.1080/00994480.1998.10748216

(13) Barkmann, C., Wessolowski, N., Schulte-Markwort, M. (2011). Applicability and efficacy of variable light in schools. Physiology and Behavior, 150(3): 621-627.

(14) Sanaz, A. S. (2011). The Influence of Light on Student's Learning Performance in Learning Environments: A Knowledge Internalization Perspective. Journal of World Academy of Science, Engineering and Technology, 81.

(15) Knez, I. (1997, 19-21 November). Changes in females and males' positive and negative moods as a result of variations in CCT, CRI and illuminance levels. En Proceedings of Right Light: 4th European Conference on Energy Eficient Lighting, vol. 1, 149-154. Copenhagen, Denmark.

(16) Van Bommel, W.J.M., van den Beld, G.J. (2004). Lighting for work: a review of visual and biological effects. Lighting Research & Technology, 36(4): 255-269. http://dx.doi.org/10.1191/1365782804li122oa

(17) Mills, P. R., Tomkins, S. C., Schlangen, L. J. (2007). The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. Journal of Circadian Rhythms, 5(1): 2. http://dx.doi.org/10.1186/1740-3391-5-2 PMid:17217543 PMCid:PMC1779263

(18) Halonen, L., Tetri, E., Bhusal, P. (2010). Chapter 3: Lighting Quality. En Guidebook on energy efficient electric lighting for buildings, (pp. 41-56). Finland: Aalto University School of Science and Technology.

(19) Boyce, P., Hunter, C., Howlett, O. (2003). The Benefits of Daylight through Windows. New York: Lighting Research Center-Rensselaer Polytechnic Institute.

(20) Köster, H. (2004). Dynamic Daylighting Architecture: Basics, Systems, Projects. Basel: Birkhäuser.

(21) Baker N.V, Franchiotti A., Steemers K.A. (1993). Daylighting in Architecture: A European Reference Book. UK: James and James (Science Publishers) Ltd.

(22) Thorn. Brighter Pupils. The applicaction of lighting in Education. (2010). http://www.thornlighting.com/holding/microsites/education_microsite_uk/lightineducation.html.

(23) Pattini, A. (2009). La Luz Natural en las Escuelas: aprovechamiento y control de la luz solar en aulas. Buenos Aires: Dunken.

(24) Bodart, M., De Herde, A. (2002). Global Energy Savings in Office Buildings By Use of Daylighting. Energy and Buildings, 34(5): 421-429. http://dx.doi.org/10.1016/S0378-7788(01)00117-7

(25) Dubois, M., Cantin, F., Johnsen, K. (2007 September) The effect of coated glazing on visual perception: A pilot study using scaleamodels. Lighting Research & Technologies, 39(3): 283-304. http://dx.doi.org/10.1177/1477153507080074

(26) Pineault, N., Dubois, M.-C. (2008). Effects of window glazing type on daylight quality: Scale model study of a living room under natural sky, Leukos. The journal of the Illuminating Engineering Society of North America, 5(2): 83-89.

(27) Hernandez-Andres, J., Lee, R. L., Romero, J. (1999). Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. Applied optics, 38(27): 5703-5709. http://dx.doi.org/10.1364/AO.38.005703 PMid:18324081

(28) Villalba, A., Pattini, A. (2012). Análisis morfológico de componentes de paso y elementos de control de luz solar en envolvente edilicia no residencial en climas soleados. El caso de la ciudad de Mendoza. Avances en Energías Renovables y Medio Ambiente (ERMA), 14(1): 65-72.

(29) Baker, N., Steemers, K. (2002). Daylight Design of Buildings. London: James & James.

(30) Jonsson, J.C., Lee, E.S., Rubin, M. (2008). Light scattering properties of woven shade-screen material used for daylighting and solar heat-gain control. En Proceedings of: SPIE Optics + Photonics. San Diego, CA. http://dx.doi.org/10.1117/12.795575

(31) Keyes, M.W. (1967). Analysis and rating of drapery materials used for indoor shading. ASHRAE Transactions, 73(1):8.4.1.

(32) Villalba, A., Pattini, A., Córica, L. (2012). Análisis de las características morfológicas de las envolventes edilicias y del entorno urbano desde la perspectiva de la iluminación natural. Ambiente Construido, 12(4): 159-175. http://dx.doi.org/10.1590/S1678-86212012000400011

(33) Boyce, P.R. (2004). Lighting research for interiors: The beginning of the end or the end of the beginning. Lighting Research & Technology, 36(4): 283-294. http://dx.doi.org/10.1191/11477153504li118oa

(34) Piccoli, B., Soci, G., Zambelli, P.L., Pisaniello, D. (2004). Photometry in the Workplace: The rationale for a new method. The Annals of Occupational Hygiene, 48(1): 29-38. http://dx.doi.org/10.1093/annhyg/meg076 PMid:14718343

(35) Navvab, Monjtaba (2006) A Comparison of Traditional and high Colour Temperature Lighting on the Near Acuity of Elementary School Children. Lighting Research & Technologies, 38(1): 41-52. http://dx.doi.org/10.1191/1365782806li155oa

(36) Goodman, T.M. (2009). Measurement and specification of lighting: A look at the future. Lighting Research & Technology, 41(3): 229-243. http://dx.doi.org/10.1177/1477153509338881

(37) Mardaljevic, J., Heschong, L., Lee, E. (2009). Daylight metrics and energy savings. Lighting Research and Technology, 41(3): 261-283 http://dx.doi.org/10.1177/1477153509339703

Publicado

2015-12-30

Cómo citar

Monteoliva, J. M., Villalba, A., & Pattini, A. (2015). Temperatura de color correlacionada de la luz natural: análisis dinámico en espacios interiores. Informes De La Construcción, 67(540), e123. https://doi.org/10.3989/ic.14.146

Número

Sección

Artículos