Informes de la Construcción, Vol 69, No 546 (2017)

Análisis bayesiano de factores de riesgo de accidente en trabajos de movimientos de tierras


DOI: http://dx.doi.org/10.3989/ic.15.154

J. F. García
CIPP Internacional, S. L. , España
orcid http://orcid.org/0000-0002-6033-055X

J. E. Martín
Departamento de Ingeniería de los Recursos Naturales y Medio Ambiente, Universidad de Vigo , España
orcid http://orcid.org/0000-0003-0157-2644

S. Gerassis
Departamento de Ingeniería de los Recursos Naturales y Medio Ambiente, Universidad de Vigo , España
orcid http://orcid.org/0000-0002-9249-6407

A. Saavedra
Departamento de Estadística e Investigación Operativa, Universidad de Vigo , España
orcid http://orcid.org/0000-0002-4845-2271

J. Taboada García
PhD student, Department of Natural Resources and Environmental Engineering, Universidad de Vigo , España
orcid http://orcid.org/0000-0002-0298-8871

Resumen


En este trabajo se analizan características de distintas obras en las que se ejecutaban trabajos de movimiento de tierras y tuvo lugar un accidente. Aplicando redes bayesianas se identifican los factores de mayor potencial predictivo de las situaciones de riesgo analizadas. Posteriormente se realizan estudios de inferencia para analizar la interrelación entre los distintos factores. Con todo esto se demuestra que las redes bayesianas pueden ser herramientas muy potentes en la descripción general de contextos de obra, y de gran capacidad predictiva dentro de la planificación de obras desde la perspectiva seguridad-producción.

Palabras clave


obra civil; movimiento de tierras; gestión de la seguridad; evaluación de riesgos; redes bayesianas; minería de datos

Texto completo:


HTML PDF XML

Referencias


(1) Swuste, P., Frijters, A., Guldenmund, F. (2012). Is it possible to influence safety in the building sector? A literature review extending from 1980 until the present. Safety Science, 50(5): 1333-1343.

(2) Feng, Y., Zhang, S., Wu, P. (2015). Factors influencing workplace accident costs of building projects. Safety Science, 72: 97-104.

(3) Holte, K. A., Kjestveit, K., Lipscomb, H. J. (2015). Company size and differences in injury prevalence among apprentices in building and construction in Norway. Safety Science, 71: 205-212.

(4) Lee, H. S., Kim, H., Park, M., Ai Lin Teo, E., Lee, K. P. (2012). Construction risk assessment using site influence factors. Journal of Computing in Civil Engineering, 26(3): 319-330.

(5) Park, J., Park, S., Oh, T. (2015). The development of a web-based construction safety management information system to improve risk assessment. Journal of Civil Engineering, 19(3): 528-537.

(6) Neapolitan, R. E. (2004). Learning Bayesian networks. Prentice Hall.

(7) Rivas, T., Matías, J. M., Taboada, J., Argüelles, A. (2007). Application of Bayesian networks to the evaluation of roofing slate quality. Engineering Geology, 94: 27-37.

(8) Martín, J. E., Rivas, T., Matías, J. M., Taboada, J., Argüelles, A. (2009). A Bayesian network analysis of workplace accidents caused by falls from a height. Safety Science, 47: 206-214.

(9) Li, L., Wang, J., Leung, H., Jiang, C. (2010). Assessment of Catastrophic Risk Using Bayesian Network Constructed from Domain Knowledge and Spatial Data. Risk Analysis: An International Journal, 30(7): 1157-1175.

(10) Rivas, T., Paz, M., Martín, J. E., Matías, J. M., García, J. F., Taboada, J. (2011). Explaining and predicting workplace accidents using data-mining techniques. Reliability Engineering and System Safety, 96: 739-747.

(11) Leu, S. S., Chang, C. M. (2013). Bayesian-network-based safety risk assessment for steel construction projects. Accident Analysis and Prevention, 54: 122-123.

(12) GeNIe & SMILE (2015). Structural Modeling, Inference, and Learning Engine. Decision Systems Laboratory, University of Pittsburgh, https://www.bayesfusion.com/.




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Este obra está bajo una licencia Creative Commons Reconocimiento 3.0 España (CC-by).


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es