Informes de la Construcción, Vol 70, No 551 (2018)

Prestaciones sismorresistentes de un edificio sanitario proyectado con la NCSE-02


https://doi.org/10.3989/ic.16.117

F. J. Pérez
Universidad de Valladolid, España
orcid http://orcid.org/0000-0002-3024-8280

L. Morillas
Universidad de Valladolid, España
orcid http://orcid.org/0000-0002-0861-2381

Resumen


Se evalúan las prestaciones sismorresistentes de un edificio de uso sanitario proyectado con la normativa española actual. La evaluación ha sido realizada en el marco de una metodología probabilística que provee una base consistente con las incertidumbres del proceso de evaluación. Un prototipo de edificio sanitario sirve como base para discutir una estimación realista de las implicaciones de terremotos raros y ocasionales en edificios de importancia especial. Para este fin, el estudio comprende un análisis dinámico no lineal de la estructura del edificio, la identificación de grupos de prestaciones estructurales y no estructurales, la expresión probabilística de la respuesta de la estructura y la cuantificación de daños y costes de reparación mediante relaciones de fragilidad. Este trabajo revela que las prestaciones sismorresistentes del edificio analizado son inapropiadas en términos de daños, pérdida de funcionalidad y costes de reparación.

Palabras clave


Evaluación sismorresistente; terremotos; instalaciones sanitarias; estructuras porticadas; daños; pérdidas

Texto completo:


HTML PDF XML

Referencias


(1) NCSE (2002). Norma de Construcción Sismorresistente: Parte General y Edificación. Ministerio de Fomento.

(2) Eurocódigo 8 (2012). UNE-EN 1998-3:2012 Proyecto de estructuras sismorresistente. Parte 3: Evaluación y adecuación sísmica de edificios. Asociación Española de Nomalización (AENOR).

(3) ASCE 7 (2010). Minimum design loads for buildings and other structures. American Society of Civil Engineers (ASCE).

(4) ATC-13 (1985). Earthquake damage evaluation data for California. Applied Technology Council, Redwood City.

(5) Ho, C., Hadj-Hamou, T., Nilsson, M. (1995, 17 de Octubre). GIS based zonation of infraestructural damage related to seismically triggered landslide risk. En Proceedings of the Fifth International Conference on Seismic Zonation (pp. 142- 149). Nantes: Ouest Editions. PMid:7788717

(6) FEMA 577 (2010). Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds. Federal Emergency Management Agency.

(7) Çeleri, M. (1996). Comparison of Northridge earthquake response of a base-isolated and conventional hospital building. Proceedings of the 11th World Conference on Earthquake Engineering. Paper No. 25. Acapulco. México.

(8) Retamales, R., Mosqueda, G., Filiatrault, A., Reinhorn, A. (2011). Testing protocol for experimental seismic qualification of distributed nonstructural systems. Earthquake Spectra, 27(3): 835-856. https://doi.org/10.1193/1.3609868

(9) Whittaker, A.S., Soong, T.T. (2003, 23-24 de Octubre). An overview of nonstructural component research at three U.S. earthquake engineering research centers. En Proceedings of Seminar on Seismic Design, Performance and Retrofit of Nonstructural Components in Critical Facilities. (pp 271-280). Los Ángeles: ATC-29-2.

(10) Filiatrault, A., Timothy, S. (2014). Performance-based seismic design of nonstructural building components: The next frontier of earthquake engineering. Earthquake Engineering and Engineering Vibration 13(1):17-46. https://doi.org/10.1007/s11803-014-0238-9

(11) FEMA 461 (2007). Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components. Federal Emergency Management Agency.

(12) ICC-ES AC156 (2006). Acceptance Criteria for Seismic Certification by Shake-Table Testing of Nonstructural Components. ICC Evaluation Service.

(13) FEMA E-74 (2012). Reducing the Risks of Nonstructural Earthquake Damage. Federal Emergency Management Agency.

(14) BS ISO 13033:2013 (2013). Bases for design of structures. Loads, forces and other actions. Seismic actions on nonstructural components for building applications. Organización Internacional de Normalización (ISO).

(15) BS EN 81-77:2013 (2013). Safety rules for the construction and installations of lifts. Particular applications for passenger and goods passenger lifts. Lifts subject to seismic conditions. British Standards Institution.

(16) BS EN 60255-21-1:1996 (1996), IEC 60255-21-1:1988. Electrical relays. Vibration, shock, bump and seismic tests on measuring relays and protection equipment. Vibration tests (sinusoidal). British Standards Institution.

(17) BS EN 60255-21-2:1996 (1996), IEC 60255-21-2:1988. Electrical relays. Vibration, shock, bump and seismic tests on measuring relays and protection equipment. Shock and bump tests. British Standards Institution.

(18) Maffei, J., Bazzurro, P. (2004). The 2002 Molise, Italy, earthquake. Earthquake Spectra 20(S1): S1- S22;. https://doi.org/10.1193/1.1770976

(19) Price, H.J., De Sortis, A., Schotanus, M. (2012). Performance of the San Salvatore Regional Hospital in the 2009 L'Aquila Earthquake. Earthquake Spectra 28(1): 239-256. https://doi.org/10.1193/1.3673595

(20) Masi, A., Santarsiero, M., Gallipoli, M., Mucciarelli, V., Manfredi, A., Dusi, A., Stabile, T.A. (2013) Performance of the health facilities during the 2012 Emilia (Italy) earthquake and analysis of the Mirandola hospital case study. Bulletin of Earthquake Engineering 12(5):2419-2443. https://doi.org/10.1007/s10518-013-9518-4

(21) Cosenza, E., Di Sarno, L., Maddaloni, G., Magliulo, G., Petrone, C., Prota, A. (2015). Shake table tests for the seismic fragility evaluation of hospital rooms. Earthquake Engineering & Structural Dynamics 44(1):23-40.

(22) Sato, E., Furukawa, S., Kakehi, A., Nakashima, M. (2011). Full-scale shaking table test for examination of safety and functionality of base-isolated medical facilities. Earthquake Engineering & Structural Dynamics 2011; 40(13): 1435- https://doi.org/10.1002/eqe.1097

(23) Shi, Y., Masahiro, K., Masayoshi, N. (2014). Disorder and damage of base-isolated medical facilities when subjected to near-fault and long-period ground motions. Earthquake Engineering & Structural Dynamics 43(11): 1683-1701. https://doi.org/10.1002/eqe.2417

(24) Kuo, K.C., Suzuki, Y., Katsuragi, S., Yao, G.C. (2011) Shake table test on clutter levels of typical medicine shelves and contents subjected to earthquakes. Earthquake Engineering & Structural Dynamics 40(12): 1367-1386. https://doi.org/10.1002/eqe.1094

(25) Furukawa, S., Sato, E., Shi, Y., Becker, T., Nakashima, M. (2013). Full-scale shaking table test of a base-isolated medical facility subjected to vertical motions. Earthquake Engineering & Structural Dynamics 42(13): 1931-1949. https://doi.org/10.1002/eqe.2305

(26) Structural Engineers Association of California & Vision 2000 Committee. Performance Based Seismic Engineering of Buildings. California Office of Emergency Services: Sacramento, 1995

(27) ASCE/SEI 31-03 (2003). Seismic Evaluation of Existing Buildings. American Society of Civil Engineers (ASCE).

(28) ASCE/SEI 41-06 (2007). Seismic Rehabilitation of Existing Buildings. American Society of Civil Engineers (ASCE).

(29) ATC-58-1 (2011). Seismic Performance Assessment of Buildings - Volume 1 - Methodology. Applied Technology Council. Redwood City, California.

(30) Moehle, J., Deierlein, G.G. (2004, 1-6 de Agosto). A framework methodology for performance- based earthquake engineering. En 13th world conference on earthquake engineering: (pp. 3812-3814). Vancouver, Canadá.

(31) Abrahamson, N. A. (1992). Non-stationary spectral matching. Seismological research letters, 63(1), 30.

(32) Hancock, J., Watson-Lamprey, J., Abrahamson, N. A., Bommer, J. J., Markatis, A., McCoy, E. M. M. A., & Mendis, R. (2006). An improved method of matching response spectra of recorded earthquake ground motion using wavelets. Journal of earthquake engineering, 10(spec01), 67-89. doi: http://dx.doi.org/10.1142/S1363246906002736. https://doi.org/10.1142/S1363246906002736

(33) CTE (2006). Código Técnico de la Edificación. Ministerio de Vivienda.

(34) EHE-08 (2008). Instrucción del Hormigón Estructural. Secretaría Técnica General. Ministerio de Fomento.

(35) CYPE Ingenieros SA (2012). CYPECAD 2012.k [Software]. Disponible en http://descargas.cype.es

(36) SeismoSoft (2016) SeismoStruct [Software] A computer program for static and dynamic nonlinear analysis of framed structures. Disponible en http://www.seismosoft.com.

(37) Yao, C., Tu, L.Y. (2012, 1-12 de Marzo). The generation of earthquake damage probability curves for building facilities in Taiwan. En Proceedings of the International Symposium on Engineering Lessons from the 2011 Great East Japan Earthquake. Tokyo, Japón.

(38) ATC-58 (2012). Performance Assessment Calculation Tool. Applied Technology Council: Redwood City, California.

(39) Benavent-Climent, A., Morillas, L., Escolano-Margarit, D. (2014). Shake-table tests of a reinforced concrete frame designed following modern codes: seismic performance and damage evaluation. Earthquake Engineering & Structural Dynamics 43(6):791-810. https://doi.org/10.1002/eqe.2372




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es