Informes de la Construcción, Vol 70, No 552 (2018)

Estudio comparativo de normas para el análisis dinámico de una torre autosoportada bajo carga de viento


https://doi.org/10.3989/ic.15.021

P. Martín
Universidad Tecnológica de La Habana “José Antonio Echeverría”, Cuba
orcid http://orcid.org/0000-0002-8954-5159

I. Fernández
Universidad Tecnológica de La Habana “José Antonio Echeverría”, Cuba
orcid http://orcid.org/0000-0002-1223-0968

V. E. Parnás
Universidad Tecnológica de La Habana “José Antonio Echeverría”, Cuba
orcid http://orcid.org/0000-0001-7912-7570

Resumen


El estudio de los métodos de análisis dinámicos para la consideración de la carga de viento es de gran importancia en las torres autosoportadas de telecomunicaciones debido a que son estructuras altamente vulnerables a los vientos extremos. En Cuba el análisis de las torres autosoportadas se realiza según lo establecido en la norma cubana de viento NC-285:2003 (NC). Esta norma es de carácter general para todas las edificaciones y no presenta las particularidades del análisis de las torres reticuladas bajo carga de viento por esta razón es necesario evaluar sus diferencias con respecto a otras normas internacionales. El presente trabajo tiene como objetivo comparar los valores de fuerzas en los elementos y desplazamientos en una torre autosoportada obtenidos de la aplicación de los métodos de análisis propuestos en las normas NC, ISO 4354- 2009 (ISO), AS/NZS1170.2-2011 (AS/NZ) y EC3: 2007 (EC3). La comparación entre las normas arrojó como resultado que las fuerzas axiales y desplazamientos obtenidos por la norma NC son menores que las obtenidos por las normas ISO, AS/NZ, EC3.

Palabras clave


torres autosoportadas; carga de viento; normas; análisis dinámico

Texto completo:


HTML PDF XML

Referencias


(1) Davenport, A.G. (1967). Gust loading factors. Journal of Structural Division. ASCE, 93(ST-3, Paper 5255): 11-34, ISSN 0044-8001.

(2) Loredo-Souza, A.M., Davenport, A.G. (2003). The influence of the design methodology in the response of transmission towers to wind loading. Journal of Wind Engineering and Industrial Aerodynamics, 91:995–1005. https://doi.org/10.1016/S0167-6105(03)00048-5

(3) Zhou, Y., Kareem, A. (2001). Gust Loading Factor: New Model. Journal of Structural Engineering, 127(2): 168-175. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(168)

(4) Davenport, A.G. (1964). The buffeting of large superficial structures by atmospheric turbulence. Annals of the New York Academy of Sciences, 116(1): 135-160. https://doi.org/10.1111/j.1749-6632.1964.tb33943.x

(5) Madugula, M.K.S. (2002). Dynamic Response of Lattice Tower and Guyed Mast, p. 110-166, Virginia, Ed. ASCE.

(6) Simiu, E. (1976). Equivalent static wind loads for tall buildings design. Journal of Structural Division, ASCE, 102: 719-737.

(7) Solari, G. (1990). A Generalized Definition of Gust Factor. Journal of Wind Engineering and Industrial Aerodynamics, 36(1): 539-548. https://doi.org/10.1016/0167-6105(90)90336-B

(8) AIJ (2004). RLB Recommendations for loads on buildings. Structural Standards Committee. Tokyo, Japan (AIJ).

(9) AS/NZS1170.2-2011 (2011). Structural Design actions, Part 2: Wind Actions. Australian/New Zeland Standart (AS/NZS).

(10) ASCE7-10 (2010). Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers (ASCE).

(11) EN1991-1-4 (2004). Eurocode 1: Actions on structures — General actions — Part 1-4: Wind actions (EN).

(12) ISO4354 (2009). Wind action on structures. International Organization for Standardization (ISO).

(13) National Research Council of Canada (2010). National Building Code of Canada (NBCC), Volume 2.

(14) Holmes, J.D. (1994). Along-wind response of lattice towers: Part I-Derivation of expressions for gust response factors. Engineering Structures, 16(4): 287-292. https://doi.org/10.1016/0141-0296(94)90069-8

(15) Holmes, J.D. (1996). Along-wind response of lattice towers II. Aerodynamic damping and deflections. Engineering Structures, 18(7): 483-488. https://doi.org/10.1016/0141-0296(95)00131-X

(16) Smith, B.W. (2007). Communication structures, p. 148, London, Ed. A. Thomas Telford. https://doi.org/10.1680/cs.34006

(17) AS3995—1994 (1994). Australian Standard: Design of steel lattice towers and masts (AS).

(18) EC3 (2007). Eurocode 3: "Design of steel structures - Part 3-1: Towers, masts and chimeneys-Towers and masts" (EC).

(19) CSA S37-01 (2001). Canadian Standards Association, Antennas, towers, and antenna supporting structures, Rexdale, Canada (CSA).

(20) TIA/EIA-222-G (2005). Structural standards for Steel Antenna Towers and Antenna Supporting Structures. Telecommunications Industry Association (TIA).

(21) NC-285 (2003). Carga de viento. Método de cálculo. Oficina Nacional de Normalización (NC).

(22) SNiP2.01.07-85 (2001). Loads and effects. State Building Committee of USSR (Gosstroi of USSR).

(23) RYMSA (2012). Broadcast products, www.rymsa.com.

(24) Martín Rodríguez, P. (2014). Estudio analítico-experimental de torre autosoportada con presencia de antenas bajo la acción del viento (Tesis de Doctorado). La Habana: CUJAE.

(25) KATHREIN (2010). Base Station Antennas, Filters, Combiners and Amplifiers for Mobile Communications, K.-W. KG, Rosenheim, Germany.

(26) Tamura, Y., Kareem, A. (2013). Advanced Structural Wind Engineering, p.6-11, 16-18, 263-268, Japan: Springer. https://doi.org/10.1007/978-4-431-54337-4

(27) Kwon, D.K. and Kareem, A. (2013). Comparative study of major international wind codes and standards for wind effects on tall buildings. Engineering Structures, 51(0): 23-35. https://doi.org/10.1016/j.engstruct.2013.01.008

(28) Vickery, P. J., Wadhera, D., Powell, M. D., & Chen, Y. (2009). A Hurricane Boundary Layer and Wind Field Model for Use in Engineering Applications. Journal of Applied Meteorology and Climatology, 48(2), 381-405. https://doi.org/10.1175/2008JAMC1841.1

(29) Giammanco, I. M., Schroeder, J. L., & Powell, M. D. (2012). Observed characteristics of tropical cyclone vertical wind profiles. Wind and Structures, 15(1), 65-86. https://doi.org/10.12989/was.2012.15.1.065

(30) Tse, K. T., Li, S. W., Chan, P. W., Mok, H. Y., & Weerasuriya, A. U. (2013). Wind profile observations in tropical cyclone events using wind-profilers and doppler SODARs. Journal of Wind Engineering and Industrial Aerodynamics, 115(0): 93-103. https://doi.org/10.1016/j.jweia.2013.01.003

(31) Tamura, Y., Cao, S., & Giang, L. T. (2012). Wind characteristics of strong tropical cyclones. Paper presented at the VI National Conference on Wind Engineering, Roorkee at New Delhi, India

(32) Li, Q.S., Zhi, L., Hu, F. (2010). Boundary layer wind structure from observations on a 325 m tower. Journal of Wind Engineering and Industrial Aerodynamics, 98(12): p. 818-832. https://doi.org/10.1016/j.jweia.2010.08.001

(33) Fu, J.Y., Wu, J.R., Xu, A., Li, Q.S., Xiao, Y.Q. (2012). Full-scale measurements of wind effects on Guangzhou West Tower. Engineering Structures, 35: 120-139. https://doi.org/10.1016/j.engstruct.2011.10.022

(34) Wang, B., Hu, F., & Cheng, X. (2011). Wind gust and turbulence statistics of typhoons in South China. Acta Meteorologica Sinica, 25(1): 113-127. https://doi.org/10.1007/s13351-011-0009-8

(35) Shiau, B.S. (2000). Velocity spectra and turbulence statistics at the northeastern coast of Taiwan under high-wind conditions. Journal of Wind Engineering and Industrial Aerodynamics, 88(2–3), 139-151. https://doi.org/10.1016/S0167-6105(00)00045-3

(36) Li, L., Kareem, A., Xiao, Y., Song, L., & Zhou, C. (2015). A comparative study of field measurements of the turbulence characteristics of typhoon and hurricane winds. Journal of Wind Engineering and Industrial Aerodynamics, 140: 49- 66. https://doi.org/10.1016/j.jweia.2014.12.008

(37) Solari, G., & Piccardo, G. (2001). Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probabilistic Engineering Mechanics, 16(1), 73-86. https://doi.org/10.1016/S0266-8920(00)00010-2

(38) Li, L., Xiao, Y., Kareem, A., Song, L., & Qin, P. (2012). Modeling typhoon wind power spectra near sea surface based on measurements in the South China sea. Journal of Wind Engineering and Industrial Aerodynamics, 104–106: 565-576. https://doi.org/10.1016/j.jweia.2012.04.005

(39) Masters, F. J., Tieleman, H. W., & Balderrama, J. A. (2010). Surface wind measurements in three Gulf Coast hurricanes of 2005. Journal of Wind Engineering and Industrial Aerodynamics, 98(10–11): 533-547. https://doi.org/10.1016/j.jweia.2010.04.003

(40) NC450 (2006). Edificaciones-Factores de Carga o Ponderación-Combinaciones. Oficina Nacional de Normalización (NC).

(41) Martín, P., et al. (2016). Experimental study of the effects of dish antennas on the wind loading of telecommunication towers. Journal of Wind Engineering and Industrial Aerodynamics, 149: p. 40-47. https://doi.org/10.1016/j.jweia.2015.11.010




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es