Análisis del ciclo de vida de un edificio con estructura de madera contralaminada en Granada-España

Autores/as

DOI:

https://doi.org/10.3989/ic.60982

Palabras clave:

Análisis del ciclo de vida (ACV), edificio de madera, análisis de la energía del ciclo de vida, transporte de materiales de construcción, residuos de construcción y demolición

Resumen


Se ha estudiado un edificio residencial con estructura de madera laminada en Granada (España) con la metodología de análisis del ciclo de vida, análisis energético del ciclo de vida y análisis de sensibilidad a cambios en la eficiencia energética durante el uso, bases de datos, distancia del transporte y diferentes escenarios para los residuos. Los impactos ambientales de las etapas de producción de materiales y construcción, así como la energía embebida fueron relativamente significantes. El valor del calentamiento global ha sido muy bajo debido al secuestro de CO2 por la madera. El análisis de sensibilidad ha revelado que la mayor reducción se consigue con la mejora de la eficiencia energética, la alta incertidumbre en los impactos de las declaraciones ambientales de producto, el escaso efecto del transporte de larga distancia sobre los impactos totales y la viabilidad de conseguir el objetivo de valorización de la Directiva Marco para el horizonte 2020 (mayor del 70%).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Nemry F, Uihlein A, Colodel CM, Wittstock B, Braune A, Wetzel C, et al. Environmental improvement potentials of residential buildings (IMPRO-building). 2008.

(2) Ghattas R, Gregory J, Olivetti E, Greene S. Life Cycle Assessment for Residential Buildings : A Literature Review and Gap Analysis 2013:1-21.

(3) Haapio A, Viitaniemi P. Environmental effect of structural solutions and building materials to a building. Environ. Impact Assess. Rev. 2008;28:587-600. https://doi.org/10.1016/j.eiar.2008.02.002

(4) Achenbach H, Diederichs SK, Wenker JL, Rüter S. Environmental product declarations in accordance with EN 15804 and EN 16485 - How to account for primary energy of secondary resources? Environ. Impact Assess. Rev. 2016;60:134-8. https://doi.org/10.1016/j.eiar.2016.04.004

(5) Bastos J, Batterman SA, Freire F. Life-cycle energy and greenhouse gas analysis of three building types in a residential area in Lisbon. Energy Build 2014;69:344-53. https://doi.org/10.1016/j.enbuild.2013.11.010

(6) Buyle M, Braet J, Audenaert A. Life cycle assessment in the construction sector: A review. Renew Sustain Energy Rev 2013;26:379-88. https://doi.org/10.1016/j.rser.2013.05.001

(7) Cabeza LF, Rincón L, Vilariño V, Pérez G, Castell A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew Sustain Energy Rev 2014;29:394-416. https://doi.org/10.1016/j.rser.2013.08.037

(8) Ortiz O, Castells F, Sonnemann G. Sustainability in the construction industry: A review of recent developments based on LCA. Constr Build Mater 2009;23:28-39. https://doi.org/10.1016/j.conbuildmat.2007.11.012

(9) Ramesh T, Prakash R, Shukla KK. Life cycle energy analysis of buildings: An overview. Energy Build 2010;42:1592-600. https://doi.org/10.1016/j.enbuild.2010.05.007

(10) Werner F, Richter K. Wooden building products in comparative LCA. Int J Life Cycle Assess 2007;12:470-9. https://doi.org/10.1065/lca2007.04.317

(11) Zabalza Bribián I, Valero Capilla A, Aranda Usón A. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 2011;46:1133-40. https://doi.org/10.1016/j.buildenv.2010.12.002

(12) Zabalza Bribián I, Aranda Usón A, Scarpellini S. Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Build Environ 2009;44:2510-20. https://doi.org/10.1016/j.buildenv.2009.05.001

(13) Sartori I, Hestnes AG. Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy Build 2007;39:249-57. https://doi.org/10.1016/j.enbuild.2006.07.001

(14) Gaspar PL, Santos AL. Embodied energy on refurbishment vs. demolition: A southern Europe case study. Energy Build 2015;87:386-94. https://doi.org/10.1016/j.enbuild.2014.11.040

(15) Peuportier BL. Life cycle assessment applied to the comparative evaluation of single family houses in the French context. Energy Build 2001;33:443-50. https://doi.org/10.1016/S0378-7788(00)00101-8

(16) Mercader M del P. Cuantificación de los recursos consumidos y emisiones de CO2 producidas en las construcciones de Andalucía y sus implicaciones en el protocolo de Kioto. Universidad de Sevilla, 2010.

(17) Mercader MP, Ramírez de Arellano A, Olivares M. Modelo de cuantificación de las emisiones de CO2 producidas en edificación derivadas de los recursos materiales consumidos en su ejecución. Inf La Construcción 2012;64:401-14. https://doi.org/10.3989/ic.10.082

(18) González MJ, García Navarro J. Assessment of the decrease of CO2 emissions in the construction field through the selection of materials: Practical case study of three houses of low environmental impact. Build Environ 2006;41:902-9. https://doi.org/10.1016/j.buildenv.2005.04.006

(19) Ortiz O, Bonnet C, Bruno JC, Castells F. Sustainability based on LCM of residential dwellings: A case study in Catalonia, Spain. Build Environ 2009;44:584-94. https://doi.org/10.1016/j.buildenv.2008.05.004

(20) Rosselló-Batle B, Ribas C, Moià-Pol A, Martínez-Moll V. An assessment of the relationship between embodied and thermal energy demands in dwellings in a Mediterranean climate. Energy Build 2015;109:230-44. https://doi.org/10.1016/j.enbuild.2015.10.007

(21) Monteiro H, Freire F. Life-cycle assessment of a house with alternative exterior walls: Comparison of three impact assessment methods. Energy Build 2012;47:572-83. https://doi.org/10.1016/j.enbuild.2011.12.032

(22) Stazi F, Tomassoni E, Bonfigli C, Di Perna C. Energy, comfort and environmental assessment of different building envelope techniques in a Mediterranean climate with a hot dry summer. Appl Energy 2014;134:176-96. https://doi.org/10.1016/j.apenergy.2014.08.023

(23) Lolli V, Panone V, Benedetti A. Comparative analysis, through lca method, between a house with laminated wood structure and straw infill and a house with reinforced concrete structure and brick infill. International Multidisciplinary Scientific Geoconference SGEM, vol. 2, 2015, p. 59-66. https://doi.org/10.5593/SGEM2015/B62/S26.008 PMid:26150982 PMCid:PMC4487706

(24) Börjesson P, Gustavsson L. Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives. Energy Policy 2000;28:575-88. https://doi.org/10.1016/S0301-4215(00)00049-5

(25) Gustavsson L, Sathre R. Variability in energy and carbon dioxide balances of wood and concrete building materials. Build Environ 2006;41:940-51. https://doi.org/10.1016/j.buildenv.2005.04.008

(26) Lenzen M, Treloar G. Embodied energy in buildings: wood versus concrete-reply to Börjesson and Gustavsson. Energy Policy 2002;30:249-55. https://doi.org/10.1016/S0301-4215(01)00142-2

(27) Sathre R, Gustavsson L. Using wood products to mitigate climate change: External costs and structural change. Appl Energy 2009;86:251-7. https://doi.org/10.1016/j.apenergy.2008.04.007

(28) Upton B, Miner R, Spinney M, Heath LS. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass and Bioenergy 2008;32:1-10. https://doi.org/10.1016/j.biombioe.2007.07.001

(29) Heeren N, Mutel CL, Steubing B, Ostermeyer Y, Wallbaum H, Hellweg S. Environmental Impact of Buildings-What Matters? Environ Sci Technol 2015;49:9832-41. https://doi.org/10.1021/acs.est.5b01735 PMid:26176213

(30) Aste N, Angelotti A, Buzzetti M. The influence of the external walls thermal inertia on the energy performance of well insulated buildings. Energy Build 2009;41:1181-7. https://doi.org/10.1016/j.enbuild.2009.06.005

(31) Nässén J, Hedenus F, Karlsson S, Holmberg J. Concrete vs. wood in buildings - An energy system approach. Build Environ 2012;51:361-9. https://doi.org/10.1016/j.buildenv.2011.11.011

(32) del Rio Merino M, Izquierdo Gracia P, Weis Azevedo IS. Sustainable construction: construction and demolition waste reconsidered. Waste Manag Res 2010;28:118-29. https://doi.org/10.1177/0734242X09103841 PMid:19723824

(33) Monier V, Mudgal S, Hestin M, Trarieux M, Mimid S. Service contract on management of construction and demolition waste - SR1. 2011.

(34) Coronado M, Dosal E, Coz A, Viguri JR, Andrés A. Estimation of construction and demolition waste (C&DW) generation and multicriteria analysis of C&DW management alternatives: A case study in Spain. Waste and Biomass Valorization 2011;2:209-25. https://doi.org/10.1007/s12649-011-9064-8

(35) ISO. Environmental management. Life cycle assessment. Principles and framework (14040: 2006) 2006.

(36) ISO. Environmental management. Life cycle assessment. Requierements and guidelines (14044: 2006) 2006.

(37) Takano A, Hafner A, Linkosalmi L, Ott S, Hughes M, Winter S. Life cycle assessment of wood construction according to the normative standards. Eur J Wood Wood Prod 2015;73:299-312. https://doi.org/10.1007/s00107-015-0890-4

(38) Guinee JB. Handbook on life cycle assessment operational guide to the ISO standards. Int J Life Cycle Assess 2002;7:311-3. https://doi.org/10.1007/BF02978897

(39) Frischknecht R, Jungbluth N, Althaus H, Bauer C, Doka G, Dones R, et al. Implementation of Life Cycle Impact Assessment Methods. Am Midl Nat 2007;150:1-151.

(40) Weidema BP, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J, et al. Overview and methodology: Data quality guideline for the ecoinvent database version 3. Ecoinvent report No. 1(v3). 2013.

(41) KLH. Environmental Product Declaration. KLH solid timber panels (cross-laminated timber). 2012.

(42) Isover. Declaraciones Ambientales de Producto. Aislamiento sostenible. 2013.

(43) Fresia Alluminio. Dichiarazione Ambientale di Prodotto di profilati per serramenti in alluminio. 2015.

(44) Jaillon L, Poon CS, Chiang YH. Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. Waste Manag 2009;29:309-20. https://doi.org/10.1016/j.wasman.2008.02.015 PMid:18434128

(45) AICIA. CALENER-VYP: Viviendas y edificios terciarios pequeños y medianos. 2009.

(46) IDAE. Proyecto SECH-SPAHOUSEC Análisis del consumo energético del sector residencial en España. 2011.

(47) Ximenes FA, Grant T. Quantifying the greenhouse benefits of the use of wood products in two popular house designs in Sydney, Australia. Int J Life Cycle Assess 2013;18:891-908. https://doi.org/10.1007/s11367-012-0533-5

(48) Gustavsson L, Joelsson A, Sathre R. Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building. Energy Build 2010;42:230-42. https://doi.org/10.1016/j.enbuild.2009.08.018

(49) Lasvaux S, Habert G, Peuportier B, Chevalier J. Comparison of generic and product-specific Life Cycle Assessment databases: application to construction materials used in building LCA studies. Int J Life Cycle Assess 2015;20:1473-90. https://doi.org/10.1007/s11367-015-0938-z

(50) European Commission. Construction and Demolition Waste management. 2015.

(51) RCD. Informe de Producción y Gestión de Residuos de Construcción y Demolición (RCD) en España Periodo 2011-2015. 2017.

(52) Sandin G, Peters GM, Svanström M. Life cycle assessment of construction materials: the influence of assumptions in end-of-life modelling. Int J Life Cycle Assess 2014;19:723-31. https://doi.org/10.1007/s11367-013-0686-x

(53) Jeffrey C. Construction and Demolition Waste Recycling A Literature Review. 2011.

(54) Tam VWY, Tam CM. A review on the viable technology for construction waste recycling. Resour Conserv Recycl 2006;47:209-21. https://doi.org/10.1016/j.resconrec.2005.12.002

(55) Gao W, Ariyama T, Ojima T, Meier A. Energy impacts of recycling disassembly material in residential buildings. Energy Build 2001;33:553-62. https://doi.org/10.1016/S0378-7788(00)00096-7

(56) Larsen AW, Merrild H, Christensen TH. Recycling of glass: accounting of greenhouse gases and global warming contributions. Waste Manag Res 2009;27:754-62. https://doi.org/10.1177/0734242X09342148 PMid:19710108

(57) Väntsi O, Kärki T. Mineral wool waste in Europe: a review of mineral wool waste quantity, quality, and current recycling methods. J Mater Cycles Waste Manag 2014;16:62-72. https://doi.org/10.1007/s10163-013-0170-5

(58) Suter F, Steubing B, Hellweg S. Life Cycle Impacts and Benefits of Wood along the Value Chain: The Case of Switzerland. J Ind Ecol 2016. https://doi.org/10.1111/jiec.12486

(59) Jiménez Rivero A, Sathre R, García Navarro J. Life cycle energy and material flow implications of gypsum plasterboard recycling in the European Union. Resour Conserv Recycl 2016;108:171-81. https://doi.org/10.1016/j.resconrec.2016.01.014

(60) Vefago LHM, Avellaneda J. Recycling concepts and the index of recyclability for building materials. Resour Conserv Recycl 2013;72:127-35. https://doi.org/10.1016/j.resconrec.2012.12.015

Publicado

2019-06-30

Cómo citar

Vidal, R., Sánchez-Pantoja, N., & Martínez, G. (2019). Análisis del ciclo de vida de un edificio con estructura de madera contralaminada en Granada-España. Informes De La Construcción, 71(554), e289. https://doi.org/10.3989/ic.60982

Número

Sección

Artículos