Informes de la Construcción, Vol 71, No 554 (2019)

Estudio del comportamiento de los morteros reciclados frente al ruido de impacto


https://doi.org/10.3989/ic.62487

D. Ferrández
Universidad Politecnica de Madrid, España
orcid http://orcid.org/0000-0003-3842-547X

P. Saiz
Universidad Politecnica de Madrid, España
orcid http://orcid.org/0000-0001-8106-0432

C. Morón
Universidad Politecnica de Madrid, España
orcid http://orcid.org/0000-0002-6928-5134

J. P. Díaz
Universidad Politecnica de Madrid, España
orcid http://orcid.org/0000-0001-9976-0541

Resumen


En la actualidad existe una amplia gama de sistemas y materiales que se emplean como atenuadores del ruido de impacto, ofreciendo buenas prestaciones a la hora de evitar la transmisión de vibraciones a través de los forjados. En este trabajo, se han elaborado placas de mortero de cuatro centímetros de espesor con cuatro tipos de árido diferentes combinados con distintas tipologías de aislamiento. Aprovechando la menor densidad de los morteros elaborados con árido reciclado, se ha llevado a cabo una investigación en la que se propone sustituir el 100% del árido natural por árido reciclado para la fabricación de morteros empleados en el sistema de losa flotante, ya que ofrecen una solución más eficiente desde el punto de vista acústico. Los morteros elaborados con áridos reciclados de cerámica y mixto los que presentan la solución óptima para atenuar impactos producidos sobre la superficie, reduciendo hasta en un 20% la velocidad de transmisión de impactos frente a sus homólogos elaborados con árido natural.

Palabras clave


mortero; velocidad de propagación; transmisión de vibraciones; árido reclicado

Texto completo:


HTML PDF XML

Referencias


(1) Schiavoni, S. D'Alessandro, F. Bianchi, F. Asdrubali, F. (2016). Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews, vol. 62, pp. 988-1011. https://doi.org/10.1016/j.rser.2016.05.045

(2) Seon, H. Kwan, B. Kim, Y. & Cho, T. (2015). Low frequency impact sound transmission of floating floor: Case study of mortar bed on concrete slab with continuous interlayer. Building and Environment, vol. 94, pp. 792-801. https://doi.org/10.1016/j.buildenv.2015.06.005

(3) Peng, H. Frank Pai, P. Deng, H. (2015). Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression. International Journal of Mechanical Sciences, vol. 103, pp. 104-114. https://doi.org/10.1016/j.ijmecsci.2015.08.024

(4) Kim, H. Kim, B. Sang-ki, P. Lee, S. (2015). An experimental study on the effects of floor impact sounds from damping materials using mineral binders. Building and Environment, vol. 89, pp. 244-252. https://doi.org/10.1016/j.buildenv.2015.02.027

(5) Wang, Y. Liu, B. Tian, A. Tang, W. (2016). Experimental and numerical investigations on the performance of particle dampers attached to a primary structure undergoing free vibration in the horizontal and vertical directions. Journal of Sound and Vibration, vol. 371, pp. 35-55. https://doi.org/10.1016/j.jsv.2016.01.056

(6) Varela, D.W. & Battista, C.R. (2011). Control of vibrations induces by people walking on large span composite floor decks. Engineering Structures, vol. 33, issue 9, pp. 2485-2494. https://doi.org/10.1016/j.engstruct.2011.04.021

(7) Código Técnico de la Edificación, Protección frente al Ruido (CTE DB-HR). Septiembre de 2009, Boletín Oficial del Estado, nº 254, de 23 de octubre de 2007, pp. 42992-43045.

(8) Ulker-Kaustell, M. & Karoumi, R. (2012). Influence of non-linear stiffness and damping on the train-bridge resonance of a simply supported railway bridge. Engineering Structures, vol. 41, pp. 350-355. https://doi.org/10.1016/j.engstruct.2012.03.060

(9) Rosell, J.R. & Cantalapiedra, I.R. (2011). Método simple para determinar el módulo de Young dinámico a partir de una excitación por impacto aplicado a morteros de cal y cemento. Materiales de Construcción, vol. 61, 301, pp. 39-48. https://doi.org/10.3989/mc.2010.53509

(10) Azenha, M. Magalhaes, F. Fraia, R. Cunha, A. (2010). Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration. Cement and Concrete Research, vol. 40, pp. 1096-1105. https://doi.org/10.1016/j.cemconres.2010.02.014

(11) Carette, J. Staquet, S. (2015). Monitoring the setting process of mortars by ultrasonic P and S wave transmission velocity measurement. Construction and Building Materials, vol. 94, pp. 196-208. https://doi.org/10.1016/j.conbuildmat.2015.06.054

(12) Morón, C. García, A. Ferrández, D. & Blanco, V. (2015). Transmission of impact vibration on concrete and mortar sheets. Shock and Vibration, article ID 184648, 6 pages. https://doi.org/10.1155/2015/184648

(13) Li, X. Zhang, Z. & Zhang, X. (2016). Using elastic bridge bearings to reduce train-induced ground vibrations: An experimental and numerical study. Soil Dynamics and Earthquake Engineering, vol. 85, pp. 78-90. https://doi.org/10.1016/j.soildyn.2016.03.013

(14) Cho, T. (2013). Experimental and numerical analysis of floating floor resonance and its effect on impact sound transmission. Journal of Sound and Vibration, vol. 332, Issue 25, pp. 6552-6561. https://doi.org/10.1016/j.jsv.2013.08.011

(15) Nagy, A. (1997). Determination of E-modulus of young concrete with non-destructive method. Journal of Materials in Civil Engineering, vol. 9 (1), 15-20 (1997). doi: 10.1061/(ASCE)0899-1561(1997)9:1(15). https://doi.org/10.1061/(ASCE)0899-1561(1997)9:1(15)

(16) An, Q. Chen, Z. Ren, Q. Liu, H. & Yan, X. (2015). Control of human-induces vibration of an innovative CSBS-CSCFS. Journal of Construction Steel Research, vol. 115, pp. 359-371. https://doi.org/10.1016/j.jcsr.2015.08.030

(17) Park, S. Yim, H. & Kwak, H. (2014). Nonlinear resonance vibration method to estimate the damage level on heatexposed concrete. Fire Safety Journal, vol. 69, pp. 32-42. https://doi.org/10.1016/j.firesaf.2014.07.003

(18) Saiz, P. González, M. Fernández, F. & Rodríguez, A. (2016). Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. Journal of Cleaner Production, vol. 118, pp. 162-169. https://doi.org/10.1016/j.jclepro.2016.01.059

(19) Eurostat, Environment and Energy, 2010. Generation and Treatment of Waste. Available in: http://ec.europa.eu//eurostat/.

(20) Vegas, I. Azkarate, I. Juarrero, A. Frías, M. (2009). Design and performance of masonry mortars made with recycled concrete aggregates. Materiales de Construcción, vol. 95. Pp. 5-18. https://doi.org/10.3989/mc.2009.44207

(21) Martínez, I. Etxeberria, M. Pavón, E. Díaz, N. (2013). A comparative analysis of the properties of recycled and natural aggregate in masonry mortars. Construction and Building Materials, vol. 49, pp. 384-392. https://doi.org/10.1016/j.conbuildmat.2013.08.049

(22) Jiménez, J.R. Ayuso, J. López, M. Fernánez, J.M. Brito, J. (2013). Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Construction and Building Materials, vol. 40, pp. 679-690. https://doi.org/10.1016/j.conbuildmat.2012.11.036

(23) Hua Dua, Z. Sun Poon, C. (2014). Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Materials and Design, vol. 58, pp. 19-29. https://doi.org/10.1016/j.matdes.2014.01.044

(24) UNE-EN 197-1: 2011. Cement - Part 1: Composition, specifications and conformity criteria for common cements.

(25) Real Decreto 256/2016. Instrucción para la Recepción de Cementos (RC-16). BOE, núm. 153, de 25 de junio de 2016, pp. 45755-45824.

(26) Falck, D.Y.; Colle'e, B. (2012). Freecad (How-To), 1st ed.; Packt Publishing: London, UK, pp. 1-70.

(27) UNE-EN 196-1: 2005. Methods of testing cement - Part 1: Determination of strength.

(28) UNE-EN 1015-3: 2000. Methods of test for mortar for masonry. part 3: determination of consistence of fresh mortar (by flow table).

(29) UNE-EN ISO 10140-5:2011. Acoustics - Laboratory measurement of sound insulation of building elements - Part 5: Requirements for test facilities and equipment.

(30) UNE-EN 13139: 2002. Aggregates for mortar.

(31) González, I.; González, B.; Martínez, F.; Carro, D. (2016) Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Mater. Construcc. 66, 323. https://doi.org/10.3989/mc.2016.06415

(32) Duan, Z.-H.; Poon, C.-S. (2014) Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Mater. Des. 58, 19-29. https://doi.org/10.1016/j.matdes.2014.01.044. https://doi.org/10.1016/j.matdes.2014.01.044

(33) UNE-EN 1744-1:2010. Tests for chemical properties of aggregates - Part 1: Chemical analysis.

(34) UNE-EN 998-2: 2012. Specification for mortar for masonry - Part 2: Masonry mortar.

(35) UNE-EN 1015-10: 2000. Methods of test for mortar for masonry - part 10: determination of dry bulk density of hardened mortar.

(36) Saiz, P. (2015). Utilización de arenas procedentes de Residuos de Construcción y Demolición, RCD, en la fabricación de morteros de albañilería. Tesis doctoral, Universidad Politécnica de Madrid.




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es