Informes de la Construcción, Vol 71, No 556 (2019)

Evaluación comparativa del ciclo de vida de cuatro soluciones constructivas diferentes para la rehabilitación de pisos de viguetas de madera con valor patrimonial


https://doi.org/10.3989/ic.66752

C. M. Calama-González
PDI. IUACC, E.T.S. Arquitectura, Universidad de Sevilla, España
orcid https://orcid.org/0000-0002-6511-2885

C. Cañas Palop
PDI. Dpto. Construcciones Arquitectónicas, Universidad de Sevilla, España
orcid https://orcid.org/0000-0002-5171-4471

Resumen


El sector de la construcción en España es un gran consumidor de recursos naturales y energéticos, siendo responsable del 50% de los residuos generados. La apuesta de las normativas actuales por un desarrollo sostenible, conlleva a que el Análisis de Ciclo de Vida (ACV) sea una herramienta fundamental para aproximarse a criterios medioambientales y valorar las intervenciones previamente al proceso constructivo. Este trabajo plantea la evaluación de los impactos medioambientales de cuatro soluciones de rehabilitación de forjados con entrevigado abovedado en edificios protegidos y de interés patrimonial de los S. XVII-XIX, en Sevilla. Tres de las soluciones de rehabilitación seleccionadas son de empleo común en este tipo de intervenciones y la cuarta utiliza una pieza prefabricada de entrevigado elaborada con un mortero cerámico reciclado. Este trabajo demuestra un mejor comportamiento de la última solución, al tener menores impactos ambientales y ser compatible con criterios patrimoniales.

Palabras clave


Análisis del ciclo de vida; residuos de cerámica; rehabilitación; forjado de madera; patrimonio

Texto completo:


HTML PDF XML

Referencias


(1) Cabeza, L.F., Rincón, L., Vilariño, V., Pérez, G., Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29: 394–

(2) European Commission. (2011). EU Energy and Transport in Figures Pocketbook. Brussels, Belgium: Publications Office of the European Union.

(3) Persson, J., Grönkvist, S. (2015). Drivers for and barriers to low-energy buildings in Sweden. Journal of Cleaner Production, 109: 296–304. https://doi.org/10.1016/J.JCLEPRO.2014.09.094

(4) INE. Statistics National Institute (2013). Survey on the collection and treatment of urban waste and the generation of waste in service and construction sectors in 2011 (In Spanish).

(5) Zabalza Bribián, I., Valero Capilla, A., Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5): 1133–1140.

(6) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste; Directive 2010/31/ EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings and Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency.

(7) Pereira-de-Oliveira, L.A., Castro-Gomes, J.P., Santos, P.M.S. (2012). The potential pozzolanic activity of glass and redclay ceramic waste as cement mortars components. Construction and Building Materials, 31: 197–203.

(8) Medina, C., Sánchez de Rojas, M.I., Thomas, C., Polanco, J.A., Frías, M. (2016). Durability of recycled concrete made with recycled ceramic sanitary ware aggregate. Inter-indicator relationships. Construction and Building Materials, 105: 480–486.

(9) European Commission (2012). Eurostat. Annual report on recycling statistics in the European Union.

(10) Russell-Smith, S.V., Lepech, M.D., Fruchter, R., Meyer, Y.B. (2015). Sustainable target value design: integrating life cycle assessment and target value design to improve building energy and environmental performance. Journal of Cleaner Production, 88: 43–51.

(11) AENOR-ISO (2006). UNE-ISO 14040, Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia y UNE-ISO 14044, Gestión ambiental. Análisis del ciclo de vida. Requisitos y directrices. Asociación Española de Normalización (AENOR).

(12) Ingwersen, W.W., Stevenson, M.J. (2012). Can we compare the environmental performance of this product to that one? An update on the development of product category rules and future challenges toward alignment. Journal of Cleaner Production, 24: 102–108.

(13) Benveniste, G., Gazulla, C., Fullana, P., Celades, I., Ros, T., Zaera, V., Godes, B. (2011). Life cycle assessment and product category rules for the construction sector. The floor and wall tiles sector case study. Informes de la Construcción, 63(522): 71-81.

(14) Almeida, M.I., Dias, A.C., Demertzi, M., Arroja, L. (2015). Contribution to the development of product category rules for ceramic bricks. Journal of Cleaner Production, 92: 206–215.

(15) Ibáñez-Forés, V., Bovea, M.D., Simó, A. (2011). Life cycle assessment of ceramic tiles. Environmental and statistical analysis. The International Journal of Life Cycle Assessment, 16(9): 916.

(16) Souza, D.M. de, Lafontaine, M., Charron-Doucet, F., Bengoa, X., Chappert, B., Duarte, F., Lima, L. (2015). Comparative Life Cycle Assessment of ceramic versus concrete roof tiles in the Brazilian context. Journal of Cleaner Production, 89: 165–173.

(17) Quinteiro, O., Almeida, M., Dias, A.C., Araújo, A., Arroja, L. (2014). The carbon footprint of ceramic products. In Assessment of Carbon Footprint in Different Industrial Sectors, pp. 113-150. Springer Publications.

(18) Han, B., Wang, R., Yao, L., Liu, H., Wang, Z. (2015). Life cycle assessment of ceramic façade material and its comparative analysis with three other common façade materials. Journal of Cleaner Production, 99: 86–93.

(19) Rincón, L., Coma, J., Pérez, G., Castell, A., Boer, D., Cabeza, L.F. (2014). Environmental performance of recycled rubber as drainage layer in extensive green roofs. A comparative Life Cycle Assessment. Building and Environment, 74: 22–30.

(20) Mateus, R., Neiva, S., Bragança, L., Mendonça, P., Macieira, M. (2013). Sustainability assessment of an innovative lightweight building technology for partition walls – Comparison with conventional technologies. Building and Environment, 67: 147–159.

(21) Pajchrowski, G., Noskowiak, A., Lewandowska, A., Strykowski, W. (2014). Materials composition or energy characteristic – What is more important in environmental life cycle of buildings? Building and Environment, 72: 15–27.

(22) Zea Escamilla, E., Habert, G. (2015). Global or local construction materials for post-disaster reconstruction? Sustainability assessment of twenty post-disaster shelter designs. Building and Environment, 92: 692-702.

(23) Such, A.V., García-Martínez, A., Sánchez-Montañés, B. (2015). Rehabilitación de edificios: revisión de modelos y la evaluación del impacto ambiental a través de análisis de ciclo de vida. In Proceedings of the II International congress on sustainable construction and eco-efficient solutions, Seville 25-27 may 2015, pp. 161-172. Sevilla: Universidad de Sevilla, Departamento de Construcciones Arquitectónicas.

(24) Rubio de Hita, P., Gálvez, F.P., Conde, M.J., Liñán, C.R. (2017). Reuse of Ceramic Demolition Waste in the Reconstruction of Planked Timber Floor Slabs. The Open Construction and Building Technology Journal, 11(1): 124-135.

(25) Gálvez, F.P., de Hita, P.R., Martín, M.O., Conde, M.M., Liñán, C.R. (2013). Sustainable restoration of traditional building systems in the historical centre of Sevilla (Spain). Energy and Buildings, 62: 648-659.




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es