Informes de la Construcción, Vol 72, No 558 (2020)

Madera en altura, estado del arte


https://doi.org/10.3989/ic.71578

B. Orta
Doctor Arquitecto. Profesor Contratado Doctor. Universidad Politécnica de Madrid, España
orcid https://orcid.org/0000-0001-9290-1911

J. E. Martínez-Gayá
Graduado en Arquitectura. Escuela Técnica Superior de Arquitectura (UPM), España
orcid https://orcid.org/0000-0003-3545-657X

J. Cervera
Doctor Arquitecto. Catedrático. Universidad Politécnica de Madrid, España
orcid https://orcid.org/0000-0002-1060-7397

J. R. Aira
Doctor Ingeniero de Montes. Profesor ayudante doctor. Universidad Politécnica de Madrid, España
orcid https://orcid.org/0000-0002-4598-5259

Resumen


El objetivo es mostrar el panorama actual de la edificación en altura con madera. Comienza con una revisión histórica desde las pagodas orientales (hasta 63m de altura) hasta las visiones de futuro (350m). Se muestra el desarrollo tecnológico que ha llevado la madera maciza hasta los productos industrializados actuales y las investigaciones en desarrollo. Se expone su comportamiento ante el fuego y las propiedades como material estructural en comparación con los materiales estructurales más utilizados para la edificación en altura: mecánicamente es tan competitivo como hormigones o aceros de alta resistencia. Ante acciones horizontales hay varias estrategias y se obtienen las esbelteces máximas alcanzables en altura. Su principal ventaja, desde el punto de vista ecológico, es su capacidad de absorber CO2, lo que, junto con el alto nivel de prefabricación, lo convierte en una alternativa sostenible cada vez con mayor aceptación

Palabras clave


Madera; edificio en altura; madera laminada; madera contralaminada; sostenibilidad; comportamiento ante el fuego; esbeltez; emisiones CO2

Texto completo:


HTML PDF XML

Referencias


(1) Green M. (2013). Why we should build skyscrapers. TED video. Retreived from https://www.youtube.com/watch?v=Xi_

PD5aZT7Q&t=315s.

(2) Hall, P. (1998). Cities of Civilization. Pantheon Books, United States of America.

(3) Fujita, K., Hanazato, T. y Sakamoto, I. (2004). Earthquake response monitoring and seismic performance of five-storied timber pagoda. In 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada.

(4) Kaiser, B. (2017). A Sustainable Timber Skyline: The Future of Design. TED/Portland, University of Oregon. Retreived

from https://www.youtube.com/watch?v=vetYAeh9MUI

(5) Nevado, M. (2016). Citius, Altius, Fortius. Arquitectura Viva, 190(12): 66-73.

(6) Harris, R.A. (1985). High-Rise Definition, Development and Use. In Harris, R.A. (Eds.) Office building industry: past, present, and future. Managing the Office Building. Rev. (pp 2-15). Institute of Real Estate Management of the National Association of Realtors (IREM). Chicago, IL.

(7) Foster, N., Luff, S., y Visco, D. (2008). Green Skyscrapers: What is being built and why? A report fot CRP 3840. Green Cities. Cornell University: Ithaca, NY, USA.

(8) Al-Khodmany, K. (2010). Eco-iconic skyscrapers: review of new design approaches. International Journal of sustainable design, 1(3): 314-334.

(9) Council of Tall Buildings and Urban Habitat, CTBUH. (septiembre 2018). The Skyscraper Center. Retreived from http://www.skyscrapercenter.com/

(10) Müller, C. (2000). Holzliembau: Laminated Timber Construction. Basel, Suiza.

(11) Steurer, A. (2005). Developments in timber engineering: The Swiss contribution. Basel: Birkhäuser.

(12) Serrano, E. (2000). Adhesive Joints in Timber Engneering- Modelling and testing of fracture properties. Lund

University.

(13) Stark, N. M., Cai, Z., & Carll, C. (2010). Wood-based composite materials: Panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials. In Wood handbook: wood as an engineering material: chapter 11. Centennial ed. General technical report FPL; GTR-190. Madison, WI: US Dept. of Agriculture, Forest Service, Forest Products Laboratory,

: 11.1-11.28.

(14) Evans, L. (2013). Cross Laminated Timber: Taking wood buildings to a new level. Architectural Records. Retreived from https://www.awc.org/pdf/education/mat/ReThinkMag-MAT240A-CLT-131022.pdf

(15) Habipi, B., Ajdinaj, D. (2015). Wood Finger-Joint Strength as Function of Finger Length and Slope Positioning of Tips. International Journal of Engineering and Applied Sciences, 2(12): 128-132. Retreived from https://ijeas.org/download_data/IJEAS0212044.pdf

(16) Cervera, J. (1993). Diseño de estructuras en edificación. Madrid: Instituto Juan de Herrera.

(17) Rahimian, A., Elion, Y. (2015). The Rise of One World Trade Center. In Proceedings of Global Interchanges: Resurgence of a Skyscaper City. New York.

(18) Sandhaas, C. (2012). Earthquake resistance of multi-storey massive timber buildings. In 2nd Forum Holzbau Beaunue.

(19) Argüelles Álvarez, R., Arriaga Martitegu, F., Esteban Herrero, M., Íñiguez González, G. y Argüelles Bustillo, R. (2013). Estructuras de Madera Bases de cálculo. Madrid: AITIM.

(20) CSIC (2010). Código Técnico de la Edificación. Documento Básico de Seguridad en caso de Incendio.

(21) EN 1995-1-2 (2006). Eurocode 5: Design of timber structures. European Commission Legislation and Standardisation.

(22) Bowyer, J., Bratkovich, S., Howe, J., Fernholz, K., Frank, M., Hanessian, S. & Pepke, E. (2016). Modern tall wood buildings: Opportunities for Innovation. Minneapolis: Dovetail Partners. Inc.

(23) Green M. (2012). The case for Tall Wood Buildings. Canadian Wood Council.

(24) FPInnovations. (2012). CLT Handbook. American Wood Council.

(25) CSIC (2008). Catálogo de elementos constructivos del CTE. Instituto Eduardo Torroja de Ciencias de la Construcción, CEPCO y AICIA. Disponible online en https://itec.cat/cec/Pages/BusquedaSC.aspx

(26) Thompson H. (2009). A Process Revealed. Auf Dem Holzweg, Fuel Publishing.

(27) CSIC (2009). Código Técnico de la Edificación. Documento Básico de Seguridad Estructural.

(28) Kaden Klingbeil Architekten. Retreived from http://www.kadenundlager.de/projects/e3/

(29) Fleming, P., Smith, S. y Ramage, M. (2014). Measuring-up in timber: a critical perspective on mid- and high-rise timber building design. Architectural Research Quarterly, 18(1): 20–30.

(30) Treet: the tallest timber-framed building in the world (2017). Orsiad. Retreived from https://www.orsiad.com.tr/en/ treet-the-tallest-timber-framed-building-in-the-world.html

(31) Abrahamsen, R. (2014). Structural design and assembly of “Treet” - a 14-storey timber residential building in Norway. In Word Conference of a Timber Engineering. Quebec City, Canadá.

(32) Naturally Wood (2016). Design and Preconstruction of a Tall Wood Building: Brock Commons Code Compliance. The University of British Columbia.

(33) Naturally Wood (2017). Construction of a Tall Wood Building: Brock Commons Construction Overview. The University of British Columbia.

(34) Abrahamsen, R. (2017). Mjøstårnet - Construction of an 81 m tall timber building. In 23-Internationales Holzbau- Forum IHF. Garmisch-Partenkirchen, Alemania.

(35) Hoho-Wien. Intelligent solutions in the world’s tallest timber high-rise. Retreived from http://www.hoho wien.at/Projekt/Technologie

(36) Skidmore, Ownings, and Merril, LLP (2017). ASIC Steel & Timber Research for High Rise Residential Buildings: Final

Report. SOM eds. Chicago, Illinois.

(37) Skidmore, Ownings, and Merril, LLP (2013). Timber Tower Research Project. SOM eds. Chicago, Illinois.

(38) Skidmore, Ownings, and Merril, LLP (2014). Timber Tower Research Project: Gravity framing development of concrete jointed timber framed system. SOM eds. Chicago, Illinois. Retreived from https://www.som.com/ideas/research/timber_tower_research_project

(39) Skidmore, Ownings, and Merril, LLP (2017). Timber Tower Research Project: Physical Testing Report. SOM eds. Chicago, Illinois.




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es