Informes de la Construcción, Vol 72, No 559 (2020)

Eficacia de estrategias de disminución del calentamiento urbano. Estudio para una ciudad de clima árido


https://doi.org/10.3989/ic.66662

María Belén Sosa
Instituto de Ambiente, Hábitat y Energía (INAHE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT-Mendoza, España
orcid https://orcid.org/0000-0002-0141-442X

Erica Correa
Instituto de Ambiente, Hábitat y Energía (INAHE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT-Mendoza, España
orcid https://orcid.org/0000-0003-1690-076X

María Alicia Cantón
Instituto de Ambiente, Hábitat y Energía (INAHE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT-Mendoza, España
orcid https://orcid.org/0000-0002-8714-9697

Resumen


Las ciudades modifican los parámetros microclimáticos aumentando el calentamiento urbano; en virtud de ello, existen diversas estrategias que colaboran a disminuir este impacto en contextos áridos. El presente trabajo evalúa el nivel de eficacia de dos estrategias factibles de ser incorporadas. Para ello, se diseñaron 96 escenarios que combinan 2 alturas de edificación (3 y 6m), 3 anchos de calle (16, 20 y 30m) y 4 orientaciones (E-O, N-S, NO-SE y NE-SO). Mediante el software ENVI-met se simuló el comportamiento térmico de los escenarios propuestos, el modelo fue validado mediante el monitoreo microclimático in situ. Las etapas de simulación fueron: 1.morfología, 2.forestación, 3.albedo y 4.estrategias combinadas. Los hallazgos más importantes indican que la incorporación de las estrategias combinadas resulta ser la opción más eficaz ya que se potencian los beneficios individuales; alcanzando disminuciones de hasta un 12% en la temperatura máxima, 10% en la mínima y 11% en la promedio.

Palabras clave


Calentamiento urbano; diseño urbano; estrategias de mitigación; eficacia

Texto completo:


HTML PDF XML

Referencias


(1) Rogers, R., y Gumuchdjian, P. (2000). Ciudades para un pequeño planeta. Barcelona: GG.

(2) Higueras, E. (2009). La ordenanza bioclimática de Tres Cantos, Madrid. Últimos avances en planificación ambiental y

sostenible. Revista de Urbanismo, 20. Recuperado de https://revistaurbanismo.uchile.cl/index.php/RU/article/view/8

(3) UN-HABITAT. (2016). World Cities Report. United Nations Human Settlements Programme.

(4) Font, P. (1998). Ordenación y Planificación Territorial. Madrid: Síntesis.

(5) Tumini, I. (2012). El microclima urbano de los espacios abiertos. Estudio de casos en Madrid (Tesis doctoral). Universidad Politécnica de Madrid.

(6) IPCC. (2014). Climate Change 2014. Synthesis Report Summary for Policymakers. Retrieved from https://www.ipcc.

ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf

(7) Oke, T. (1982). The energetic basis of the urban heat island. Quarterly Journal Royal Meteorological Society, 108(455): 1-24.

(8) Givoni, B. (1998). Climate consideration in buildings and urban design. United States of America: Van Nostrand Reinhold.

(9) Ratti, C., Raydan, D., y Steemers, K. (2003). Building form and environmental performance: archetypes, analysis and an arid climate. Energy and Buildings, 35(1): 49-59.

(10) Scudo G., y Ochoa de la Torre, J. M. (2003). Spazi verdi urbani, la vegetazione come strumento di progetto per il comfort ambientale negli spazi abitati. Napoli: Esselibri.

(11) ICLEI. (1994). Carta de las ciudades europeas hacia la sostenibilidad. En Conferencia europea sobre ciudades sostenibles, Aalborg - Dinamarca, 24 al 27 de mayo.

(12) Eliasson, I. (2000). The use of climate knowledge in urban planning. Landscape and Urban Planning, 48(1-2): 31-44.

(13) Svensson, M. y Eliasson, I. (2002). Diurnal air temperatures in built-up areas in relation to urban planning. Landscape and Urban Planning, 61(1): 37-54.

(14) Alcoforado, M., Andrade, H., Lopes A. y Vasconcelos, J. (2009). Application of climatic guidelines to urban planning: the example of Lisbon (Portugal). Landscape and Urban Planning, 90(1-2): 56-65.

(15) Ren, C., Ng, E. y Katzschner, L. (2011). Urban climatic map studies: a review. International Journal of Climatology, 31(15): 2213-2233.

(16) Grimmond, C., Roth, M., Oke, T., Au, Y., Best, M., Betts, R., Carmichael G, Cleugh, H., Dabberdt, W., Emmanuel, R., Freitas, E., Fortuniak, K., Hanna, S., Klein, P., Kalkstein, L., Liu, C., Nickson, A., Pearlmutter, D., Sailor, D. y Voogt, J. (2010). Climate and more sustainable cities: climate information for improved planning and management of cities (producers/ capabilities perspective). Procedia Environmental Sciences, 1:247–274.

(17) Ng, E. (2012). Towards planning and practical understanding of the need for meteorological and climatic information in the design of high-density cities: a case-based study of Hong Kong. International Journal of Climatology, 32(4): 582-598.

(18) Norton, B., Coutts, A., Livesley, S., Harris, R., Hunter, A. y Williams, N. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134: 127-138.

(19) Grimmond, C., y Oke, T. (1999). Aerodynamic properties of urban areas derived from analysis of urban form. Journal of Applied Meteorology, 38(9): 1262-1292.

(20) Shashua-Bar, L., Tzamir, Y., y Hoffman, M. (2004). Thermal effects of building geometry and spacing on the urban canopy layer microclimate in a hot-humid climate summer. International Journal of Climatology, 24(13): 1729-1742.

(21) Arnfield, A. (2013). Canyon geometry, the urban fabric and nocturnal cooling: a simulation approach. Physical Geography, 11(3): 220-239.

(22) Cabras, E. (2014). Efectos de la morfología de las calles en el fenómeno de la isla de calor urbana en la ciudad de Barcelona (Tesis doctoral). Universidad Politécnica de Cataluña.

(23) Santamouris, M., Ding, L., Fiorito, F., Oldfield, P., Osmond, P., Paolini, R., Synnefa, A., y Prasad, D., (2017). Passive and active cooling for the outdoor built environment – Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Solar Energy, 154: 14-33.

(24) Rizwan, A., Dennis, L. & Liu, C. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1): 120-128.

(25) Kleerekoper, L., Van Esch, M., y Salcedo, T., (2012). How to make a city climate-proof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64: 30-38.

(26) Jusuf, S.K., Wong, N.H. & Hagen, E. (2007). The influence of land use on the urban heat island in Singapore. Habitat Internacional, 31(2): 232–242.

(27) NRDC, Raimi + Associates and the Natural Resources Defense Council (2011). A Citizen’s Guide to LEED for Neighborhood Development: How to Tell if Development is Smart and Green.

(28) Ruiz, M. A., Sosa, M. B., Correa, E., & Cantón, M. A. (2017). Design tool to improve daytime thermal comfort and nighttime cooling of urban canyons. Urban Planning and Landscape, 167: 249-256.

(29) Sanusi, R., Johnstone, D., May, P., & Livesley, S. (2016). Street orientation and side of the street greatly influence the microclimatic benefits street trees can provide in summer. Journal of Environmental Quality, 45(1): 167–174.

(30) Bakarmana, M. & Changa, J. (2015). The influence of height/width ratio on urban heat island in hot-arid climates. Procedia Engineering, 118: 101-108.

(31) Bourbia F. y Awbi, H. (2004a). Building cluster and shading in urban canyon for hot dry climate: Part 1: Air and surface temperature measurements. Renewable Energy, 29(2): 249-262.

(32) Bourbia F. y Awbi, H. (2004b). Building cluster and shading in urban canyon for hot dry climate: part 2: shading simulations. Renewable Energy, 29(2): 291-301.

(33) Middel, A., Häb, K., Brazel, A. J., Martin, C. A., & Guhathakurta, S. (2014). Impact of urban form and design on midafternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122: 16-28.

(34) Middel, A., Chhetri, N., & Quay, R. (2015). Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban Forestry & Urban Greening, 14(1): 178-186.

(35) Schmidt, M. (2006). The contribution of rainwater harvesting against global warming. Technische Universität Berlin, IWA Publishing.

(36) Kravcík, M., Pokorny, Kohutiar, J., Kovác, M. y Tóth, E., (2007). Water for the Recovery of the Climate – A New Water Paradigm. Building Environment, 45: 192-201.

(37) Nishimura, N., Nomura, T., Iyota, H. y Kimoto, S., (1998). Novel water facilities for creation of comfortable urban micrometeorology. Solar Energy, 64(4-6): 197–207.

(38) Barakat, A., Ayad, H. & El-Sayed, Z. (2017). Urban design in favor of human thermal comfort for hot arid climate using advanced simulation methods. Alexandria Engineering Journal, 56(4): 533-543.

(39) Todhunter, P. (2013). Microclimatic variations attributable to urban-canyon asymmetry and orientation. Physical Geography, 11(2): 131-141.

(40) Mirzaei, P., y Haghighat, F., (2010). Approaches to study Urban Heat Island e Abilities and limitations. Building and Environment, 45(10): 2192-2201.

(41) Casey, M., y Wintergerst, T. (2000). Quality and trust in industrial CFD – best practice guidelines. ERCOFTAC Special Interest Group, Sulzer Innotec, Fluid Dynamics Laboratory.

(42) van Hooff, T., y Blocken, B., (2010). Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: a case study for the Amsterdam Arena stadium. Environmental Modelling & Software, 25(1): 51-65.

(43) Arnfield, A. (2013). Canyon geometry, the urban fabric and nocturnal cooling: a simulation approach. Physical Geography, 11(3): 220-239.

(44) Blocken, B. (2015). Computational Fluid Dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building Environment, 91: 219-45.

(45) Allegrini, J., Dorer, V., y Carmeliet, J., (2015). Influence of morphologies on the microclimate in urban neighbourhoods. Journal of Wind Engineering and Industrial Aerodynamics, 144: 108-117.

(46) Stocco, S., Cantón, A. & Correa, E. (2018). Alternativas de diseño para mejorar el desempeño ambiental de plazas urbanas de Mendoza (Argentina). Evaluación mediante simulación con ENVI-met 3.1. Informes de la Construcción, 70(550), e253.

(47) Acero, J. & Arrizabalaga, J. (2018). Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. J. Theor Appl Climatol, 131: 455-469.

(48) López-Cabeza, V.P., Galán-Marín, C., Rivera-Gómez, C. & Roa-Fernández, J. (2018). Courtyard microclimate ENVI-met outputs deviation from the experimental data. Building and Environment, 144: 129-141.

(49) Salata, F.,Golasi, I., de Lieto Vollaro, R. & de Lieto Vollaro, A. (2016). Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustainable Cities and Society, 26: 318-343.

(50) Tsoka, S., Tsikaloudaki, A. & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43: 55-76.

(51) Bórmida, E., (1986). Mendoza, modelo de ciudad oasis. Revista SUMMA, 226: 68-72.

(52) IPV. (2010). Instituto Provincial de la Vivienda, Mendoza.

(53) INDEC. (2010). Censo nacional de población, hogares y viviendas.

(54) Oke, T. (2004). Initial guidance to obtain representative meteorological observations at urban sites. IOM Report No.

, World Meteorological Organization. Retrevied from https://www.wmo.int/pages/prog/www/IMOP/publications/

IOM-81/IOM-81-UrbanMetObs.pdf

(55) Correa, E. (2006). Isla de Calor Urbana. El caso del área metropolitana de Mendoza (Tesis doctoral). Universidad Nacional de Salta.

(56) Wang, Y. & Akbari, H. (2016). Analysis of urban heat island phenomenon and mitigation solutions evaluation for Montreal. Sustainable Cities and Society, 26: 438-446.

(57) Alchapar, N. (2014). Materiales de la envolvente urbana. Valoración de su aptitud para mitigar la isla de calor en ciudades de zonas áridas (Tesis doctoral). Universidad Nacional de Salta.

(58) Krüger, E., Pearlmutter, D., & Rasia, F. (2010). Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment. Applied Energy, 87(6): 2068-2078.

(59) Ali-Toudert, F. & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2): 94-108.

(60) Alchapar, N., Pezzuto, C., Correa, E. & Labaki, L. (2017). The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina. Theoretical and Applied Climatology, 130: 35-50.

(61) Terando, A. J., Youngsteadt, E., Meineke, E. K., & Prado, S. G. (2017). Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements. Ecology and Evolution, 7(23): 9890-9904.

(62) Huwald H., Higgins C. W., Boldi M.O., Bou-Zeid E., Lehning M., & Parlange M. B. (2009). Albedo effect on radiative errors in air temperature measurements. Water Resources Research, 45(8): W08431.

(63) Richardson S. J., Brock F. V., Semmer S. R., & Jirak C. (1999). Minimizing errors associated with multiplate radiation shields. Journal of Atmospheric and Oceanic Technology, 16(11): 1862-1872.




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es