Estudio experimental del rendimiento térmico de la cavidad de aire de fachadas ventiladas opacas en condiciones de viento extremo: estudio de caso Bakú

Autores/as

DOI:

https://doi.org/10.3989/ic.74247

Palabras clave:

Fachada ventilada opaca, investigación experimental a gran escala, velocidad del aire de la cavidad, velocidad del viento, articulaciones cerradas, resistencia termica, características térmicas

Resumen


El uso generalizado de fachadas opacas ventiladas, hace que la investigación de su rendimiento térmico sea relevante porque existe la necesidad de una evaluación objetiva de su eficiencia energética en la etapa operativa. El artículo está dedicado a la investigación experimental a gran escala de las características térmicas de una cavidad de aire del sistema de fachada ventilada de forma natural con juntas cerradas, bajo condiciones extremas de viento, comparando las características térmicas de la cavidad de aire, se basa en cálculos que cumplen con los estándares de construcción y en los resultados del experimento a escala. Se utilizaron equipos de medición Testo 435 y 417. Se obtuvo una ecuación empírica aproximada entre la velocidad del viento cuando es superior a 7 m/s y la velocidad del aire de la cavidad. Un aumento en la velocidad del viento a lo largo de la pared conduce a un aumento en la velocidad del aire de la cavidad, que se acerca a 1-1.5 m/s y una disminución en la resistencia térmica. Los resultados del cálculo, se pueden usar para el control experimental de las características térmicas de la fachada con el fin de cumplir con una auditoría energética multidisciplinaria del edificio.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Akbarova, S., Mammadov, N. (2018). Multi-disciplinary Energy Auditing of Educational Buildings in Azerbaijan: Case Study at a University Campus. IFAC, International Federation of Automatic Control. International Conference https://www.sciencedirect.com/journal/ifac-papersonline, 51(30), 311–315.

(2) Energy balance of Azerbaijan. (2017). Report of State Statistical Committee of the Republic of Azerbaijan. https://www.stat.gov.az/source/balance_fuel/?lang=en.

(3) Sierra-Pérez, J., Boschmonart-Rives, J., Gabarrell, X. (2015). Comparative combinations of façade-building systems and thermal insulation materials for different climatic conditions: an environmental assessment. Journal of cleaner production. 113.

.

(4) Mahdavinejad, M., Mohammadi S. (2018). Ecological analysis of natural ventilated facade system and its performance in Tehran’s climate. 8(1), 273–281.

(5) Bienvenido-Huertas, D., Rodríguez-Álvaro, R., Moyano, J., Marín, D., Rico, F. (2019). A comparative study of the methods to assess the thermal transmittance in opaque walls in the Mediterranean winter. Informes de la Construcción, 71 (554), e288.

.

(6) Akbarova S. (2018). Trends of Energy Performance Certification of Buildings in Azerbaijan. International Journal of Engineering and Technology (UAE), 7(3.2), 563-566. https://www.sciencepubco.com/index.php/ijet/article/view/14590

(7) Mammadov, N., Akbarova, S., Rzayeva N. (2018). Building energy auditing is a tool to improve their energy efficiency. Ingenieurtag_2018. Brandenburq Technical University, Germany. 210-219. https://opus4.kobv.de/opus4-btu/frontdoor/deliver/index/docId/4724/file/4_Ingenieurtag_2018.pdf.

(8) Halawa, E., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Trombley, J., Hassan, N., Baig, M. (2017). A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin. Renewable and Sustainable Energy Reviews. 82, 2147-2161.

(9) Petrichenko, M., Musorina, T., Statsenko, E., Ostrovaia, A., Tarasov1, V. (2016). Functionality of Ventilated Facades: Protection of Insulation. International Scientific Conference Week of Science in SPbPU.

(10) Tusnina, V. (2016). To the problem of bearing capacity and operational reliability of suspended ventilated facade Procedia Engineering, 153, 799 – 804.

(11) Ibanez-Puy, M., Vidaurre-Arbizu, M., Saristan-Fernandez, J., Martin-Gomez, C. (2017). Opaque ventilated facades: thermal and energy performance review. Renewable and sustainable energy reviews. 79, 180-191.

(12) Barbosa, S., Ip, K. Perspectives of double skin façades for naturally ventilated buildings: a review. (2014). Renew Sustain Energy. 40, 1019–1029.

(13) Shameri, M., Alghoul, A., Sopian, K., Zain, M., Elayeb, O. (2011). Perspectives of double skin façade systems in buildings and energy saving. Renew Sustain Energy. 15, 1468–1475.

(14) Peci López, F., Ruiz de Adana Santiago, M. (2015). Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain. Renew Energy, 75(C), 524–533.

(15) Iribar-Solaberrieta, E., Escudero-Revilla, C., Odriozola-Maritorena, M., Campos-Celador, A., García-Gáfaro, C. (2015). Energy performance of the opaque ventilated facade. Energy Procedia, 78, 55–60.

(16) Manz, H., Frank, T. (2005). Thermal simulation of buildings with double-skin façades. Energy Build, 37, 1114–1121.

(17) Peci López, F., Ruiz de Adana Santiago , M., Comino, F., Berlanga, F. (2016). Installing Opaque Ventilated Facades for Energy Saving in Old Buildings. CLIMA 2016 - proceedings of the 12th REHVA World Congress, vol. 1.

(18) Peci López, F. (2012) Numerical and experimental analysis of the energy saving and potential of ventilation of opaque ventilated facades. (Tesis doctoral). Universidad de Córdoba.

(19) Guerrero-Rubio, J., Sendra, J.J., Fernández-Agüera, J., Oteiza, I. (2017). Test cell data-based predictive modelling to determine HVAC energy consumption for three façade solutions in Madrid. Informes de la Construcción, 69(548), e225,

(20) Gagarin, V., Kozlov, V., Lushin, K. (2015). Calculation of the velocity of air in the air gap facade systems, where natural ventilation. International Journal of Applied Engineering Research, 10(23), 43438-43441, http://www.ripublication.com.

(21) Mingottia, N., Chenvidyakarna, T., Woodsb, A.W. (2011). The fluid mechanics of the natural ventilation of a narrow-cavitydouble-skin facade. Building and Environment, 46, 807-823.

(22) Balter, J., Pardal, C., Paricio, I., Ganem, C. (2019). Air cavity performance in opaque ventilated façades in accordance with the Spanish Technical Building Code. Architecture, City and Environment, 13 (39), 211-232.

(23) Falk, J., Sandin, K. (2012). Ventilated rain screen cladding: Measurements of cavity air velocity estimation of air change rates and evaluation of driving forces. Building and Environment. 59, 164-176.

(24) Palyvos, A. (2008). A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Applied Thermal Engineering. 28(8-9), 801-808.

(25) Seferis, P., Strachan, A., Dimoudi, A., Androutsopoulos, A. (2011). Investigation of the performance of a ventilated wall. Energy and Buildings. 43(9), 2167-2178.

(26) Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings. 34 (5), 469-475.

(27) Lorente, S. (2002). Heat losses through building walls with closed, open and deformable cavities. International Journal of Energy Research. 26, 611-632. doi:10.1002/er.807.

(28) Peci Lopez, F., Jensen, R.L., Heiselberg, P., Ruiz de Adana Santiago, M. (2012). Experimental analysis and model validation of an opaque ventilated facade. Building and Environment, 56, 265 - 275.

(29) Katunska, J., Bullova, I., Špaková, M. (2017). Analysis of Air Flow in the Ventilated Insulating Air Layer of the External Wal. Journal of Civil Engineering.

(30) Katunska, J., Bullová, I., Špaková, M. (2017). Analysis of Air Flow in the Ventilated Insulating Air Layer of the External Wall. Journal of Civil Engineering.

(31) Katunska, J., Bullová, I. (2017). Air Flow in the Ventilated Insulating Air Layer. MABD, At Mutenice, Czech Republic,- Conference Paper.

(32) Mammadov, N., Akbarova, S. (2017). New Methodology of Multi- Disciplinary Energy Auditing of Buildings in Azerbaijan. International Symposium On Innovative Technologies In Engineering And Science. Sakarya University, Turkey, Academic Platform. 210-219. http://isites.info/PastConferences/ISITES2017/ISITES2017/papers/A10-ISITES2017ID46.pdf

(33) EN ISO 6946. (2012). Componentes y elementos para la edificación. Resistencia térmica y transmitancia térmica. Método de cálculo.

(34) SP 50.13330. (2012). (Russian acronym, Code of Construction). Thermal performance of the buildings. Appendix L. In Russian.

(35) SNiP 23-02-2003. (2003). (Russian acronym, Construction Norms and Regulations). Thermal performance of the buildings. In Russian.

(36) Gagarin, V., Kozlov, V., Mekhnetsov, I. (2006). Longitudinal Filtration of Air in Modern Enclosures (Method for Estimating the Heat-Shielding of Walls in a Building with Ventilated Facade Allowing for Longitudinal Filtration of Air). АВОК- Sustainable building technologies. 8, 17–28.

(37) SNiP 2.01.07-85*. (1985). (Russian acronym, Construction Norms and Regulations). Loads and exposures. In Russian.

(38) Gagarin, V., Guvernjuk, S., Kozlov, V., Ledenev, P., Tsykanovsky, E. (2010). Results of researches of properties of hinged facade systems with the ventilated air layer in the frame of the grant of the russian fundamental researches fund «Aerothermophysics of nontight bodies in low speed air streams». Construction sciences. 3, 261-278.

(39) Prada, A., Baratieri, M., Gasparella, A. (2013). Analysis of the impact of ventilated cavities on the performance of opaque components. 1st IBPSA-Italy International Conference.

Publicado

2021-03-16

Cómo citar

Mammadova, G. ., Sharifov, A. ., & Akbarova, S. . (2021). Estudio experimental del rendimiento térmico de la cavidad de aire de fachadas ventiladas opacas en condiciones de viento extremo: estudio de caso Bakú. Informes De La Construcción, 73(561), e376. https://doi.org/10.3989/ic.74247

Número

Sección

Artículos