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Load distribution in flat reciprocal structures
Distribución de cargas en estructuras recíprocas planas

Laura Gonzalo-Calderón (*), José Ramón Aira (**)

ABSTRACT

The elements in conventional structures are perfectly ranked, so that load transmission is logical and follows the usual structural 
orders. Nevertheless, in reciprocal structures each element has to support all of the others in a less intuitive pattern of load trans-
mission. The purpose of this paper is to understand exactly how load is transmitted between elements, quantifying this analytically 
by developing a new method which is applicable to a flat structure composed of a basic unit with any number of nexors. It is based 
on determining the increase in load to which the members in a reciprocal structure are subjected by calculating the coefficient k, 
or “transference coefficient”. The k coefficient value, and therefore the load transferred between members, falls with the number of 
nexors, with the proximity of point loads to exterior supports, and with the size of the central space in the structure.

Keywords: reciprocal structures; timber construction; analytical method; load transmission.

RESUMEN

En las estructuras convencionales la transmisión de cargas es lógica y sigue los órdenes estructurales habituales. Sin embargo, 
en las estructuras recíprocas cada elemento tiene que soportar a todos los demás en un patrón de transmisión de cargas menos 
intuitivo. El objetivo de este trabajo es comprender exactamente cómo se transmite la carga entre los elementos, cuantificándolo 
analíticamente mediante el desarrollo de un nuevo método que es aplicable a estructuras planas compuestas por una unidad 
básica con cualquier número de nexors. Se basa en la determinación del incremento de carga al que están sometidos los miembros 
de la estructura recíproca mediante el cálculo del coeficiente k, o “coeficiente de transferencia”. El valor del coeficiente k, y por 
tanto la carga transferida entre los miembros, disminuye con el número de nexors, con la proximidad de las cargas puntuales a 
los apoyos exteriores y con el tamaño del espacio central.
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1. INTRODUCTION

Reciprocal structures have been used for centuries because 
they are an ingenious solution when the aim is to roof large 
spans using short elements and engagement lengths (1-3). 
The simplest forms of this type of structure are both tempo-
rary and reversible, and they are made using elements that 
are highly transportable. 

Wood is a perfect material for building reciprocal structures 
as it is very resistant against forces parallel to its fibre, very 
low in weight in comparison with its strength, flexible so that 
elements can be joined without the need to use heavy me-
chanical aids, and with good elastic capacity so that it can be 
assembled and disassembled when necessary. 

As is the case in other types of ancient constructions, the ba-
sic material consisted of small pieces of wood from nearby 
forests, as this was the most economical solution, giving im-
mediately available components.

According to del Rio (4) the oldest texts documenting recip-
rocal structures date back to the Middle Ages with Villard 
de Honnecourt (5) and early Renaissance with Leonardo da 
Vinci and Sebastian Serlio (6-8). Indeed, Leonardo da Vinci 
made several sketches of floors and roofs to cover surfaces 
and even as bridges to pass over linear obstacles such as riv-
ers, roads, etc. (9), Figure 1. An in-depth review of the scien-
tific literature on reciprocal structures may be found in previ-
ous work carried out by other researchers (10, 11).

Figure 1. Scale model of Leonardo da Vinci’s sketch.

Although this is not a very common structural typology, re-
ciprocal structures fell into total disuse after the second half 
of the 18th century because the industrial revolution brought 
about the development of new structural materials and the 
production of longer elements able to cover long spans.

However, in recent decades this type of structure has found 
a new market niche in what is termed ephemeral architec-
ture. This consists of temporary works that are fully reusable, 
fitting very well with the current tendencies for sustainable 
architecture or bioconstruction. The scientific literature con-
tains several examples of three-dimensional reciprocal con-
structions which express this resurgence (12-16). Another 
advantage of this type of structure is that prefabricated parts 

can be used, with simple or complex geometry, which are 
easy to assemble on-site (17).

It is important to use the same terms when referring to the 
elements of these structures when studying them, Figure 2. 
Reciprocal structures are also known as “nexorades”. The 
term “nexor” stems from Latin, and it means “nexus” or 
“connection”, so that the term “nexorade” means “assembly 
of connections”. 

Figure 2. Basic units, or fans, of 3 nexors and 4 nexors.

Reciprocal structures or nexorades are modular, and they 
are composed of basic units denominated “fans”. Each fan is 
composed of at least 3 nexors, which is the term used to refer 
to the members in a fan (18).

Depending on the arrangement of these basic units or fans, 
nexorades can be of three types: “simple” when the structure 
consists of a single basic unit of either 3 nexors, 4 nexors, 
5 nexors, etc.; “multiple” when the structure consists of a 
combination of several basic units, such as a combination of 
several basic units of 3 nexors with several basic units of 4 
nexors; and “complex” when the structure consists of the ex-
tension by repetition of the same basic unit (11).

A regular structure is obtained when the members of a recip-
rocal structure are arranged regularly around a central point 
of symmetry. An irregular structure results from the repeti-
tion of basic units in a disorganised way without a regular 
pattern (19).

2. JUSTIFICATION AND OBJECTIVES

In recent years reciprocal structures have been increasingly 
used by engineers and architects, due to their high degree of 
congruity with certain current trends. Thus some researchers 
undertook the laborious task of collecting the most impor-
tant design aspects used to date, with the aim of encouraging 
their use in architecture (11). They stated that in conventional 
structures the challenge is to adapt structure to architectural 
design requirements. However, in reciprocal structures the 
challenge arises in the design phase, due to the large number 
of variables that influence structural shape and behaviour.

Some researchers have concentrated on the study of recipro-
cal structures from a geometrical point-of-view, establishing 
and optimising the parameters that determine their shape 
(18, 20-25). Although other researchers have tried to explain 
how these structures work in mechanical terms, it has yet to 
be explained in depth how loads are transmitted between el-
ements, i.e., exactly what the reciprocal behaviour of struc-
tures of this type consists of.

The elements in conventional structures are ranked perfectly, 
so that load transmission is logical and perfectly follows the 
structural orders set by the design. Nevertheless, in a recipro-
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cal structure each element in it has to support all of the others 
to a greater or lesser degree, in a non-intuitive pattern of load 
transmissions between them. The principle of reciprocity is 
defined as the use of supporting elements which, resting on 
each other, form a spatial configuration without any clear 
structural hierarchy (10). 

In a reciprocal structure, no substructure is stable until the 
complete structure has been assembled, and moreover if 
one of its elements is eliminated, then each part of the struc-
ture will be mobile respecting all of the other parts, i.e., this 
would create a mechanism (26). The work by John Wallis 
in his Opera mathematica stands out in this respect (27). 
This was recalled and examined by Houlsby (26). Wallis an-
alysed the distribution of loads in a reciprocal structure that 
had been proposed by Leonardo da Vinci. This is a flat re-
ciprocal structure floor created by repeating a 4 nexor basic 
unit. To do this Wallis only considered the load arising from 
the weight of the elements themselves. By establishing the 
balance of moments of each member, he obtained 25 linear 
equations (first-degree equations) that resolved the 25 un-
knowns or loads at the connections in the structure. Wallis’s 
working method of dividing the problem into simple inter-
connected parts was brilliant, and there can be no doubt 
that it was the predecessor of the finite elements technique 
now in widespread use for structural analysis. However, 
Wallis’s analysis centres on a particular reciprocal structure 
and also uses a type of load (self weight) that generates no 
load-share asymmetries in the supports. Thus, although this 
approach hints at the presence of reciprocal behaviour, this 
is never made explicit, and moreover it is not possible to ex-
trapolate its results to reciprocal structures that differ from 
the one analysed.

Gelez analysed the behaviour of reciprocal structures using 
a method that is half analytical and half numerical, to obtain 
the maximum moment and the deformation at the centre of 
a basic unit (28). The calculation hypothesis used load that 
was distributed over the entire surface, simulating a real load 
state. Nevertheless, this consideration made it impossible to 
find how loads were actually transmitted between the dif-
ferent elements, as equal reactions are obtained in all of the 
exterior supports of the structure. They also reached several 
relevant conclusions regarding its structural behaviour. They 
defined the difference between reciprocal structures and flat 
meshes on the basis of their degrees of freedom, indicating 
that flat meshes prevent turning around the strong axis of the 
section, which does not occur in reciprocal structures. Given 
this consideration, in the centre of reciprocal structures great-
er bending moments and deformations arose than was the 
case in flat meshes, which is logical as flat meshes have more 
rigid connections that transmit the load to supports around 
the edge, instead of being supported by elements within the 
structure itself. They also stated that reciprocal structures are 
less robust than flat meshes. This is because reciprocal struc-
tures are considered to be statically determined, i.e., load is 
distributed by a single transmission mechanism, and if any 
one of its elements is lacking then it collapses. On the oth-
er hand, in a flat mesh there are different load transmission 
mechanisms in case any element is missing.

The fact that a flat reciprocal structure is considered to be 
statically determined indicates that it is not necessary to un-
dertake deformation compatibility analysis to discover the 
unknowns in the system. The loads which act on each con-

nection will therefore be independent of the rigidity of the 
material and member cross-section.

Kohlhammer and Kotnik used a repetitive approach to dis-
cover the distribution of loads among connections, under the 
action of the self weight of the elements in a flat reciprocal 
structure (29). They correctly considered that the load acting 
on each connection varies in each one of the repetitions. Each 
repetition consisted of distributing the loads of the members 
which received load from the members in contact with them. 
The loads in the connections were calculated computationally 
by considering a static balance of the system after each rep-
etition. Finally, to verify their methodology, they compared 
the results with a finite element analysis, finding very slight 
differences between them.

The aim of this research work consists of understanding ex-
actly how load transmission occurs between the members of 
a simple reciprocal structure and obtaining, analytically, the 
amount of this load in each point of the system. Once the ex-
act amount of load on each member of a reciprocal structure 
and the influence of the geometry on the load transmission 
is known, it will be possible to design such structures more 
accurately and more quickly.  The analytical equations ob-
tained will be used as the basis for further research work that 
analyses more complex reciprocal structures.

3. MATERIALS AND METHODS

The methodology consists of analysing how loads are trans-
mitted between the members of a flat reciprocal structure 
composed of a basic unit of n nexors. 

The structure is considered to be subjected to perpendicular 
exterior loads, while ignoring the self weight of the elements. 
Point loads as well as loads distributed over members are an-
alysed at any position in the structure. 

The initial hypothesis considers a reciprocal structure with a 
point load applied on one of its members. The static balance 
of the member that receives the load is established, and so 
on successively until the final member is reached, observing 
that a part of the initial load returns to the first member af-
ter passing through all of the members in the structure. With 
this the static balance of the first member is lost, so that the 
extra load has to be distributed once again among all of the 
members. In each repetition the extra load is less each time, 
in a process that gradually approaches zero. The calculation 
methods proposed by some researchers are based on this 
consideration (2, 29).

Based on the above argument it is possible to conclude that 
every time an exterior load is applied to a member in a re-
ciprocal structure of the type studied, this will be distribut-
ed between an exterior support and an interior support, and 
that, in turn, the load that reaches the inner support must be 
supported once again by the whole structure, including the 
member that receives the exterior load.

The method described in this work consists of firstly estab-
lishing this increase in load on the first member in order to 
make the distributions to the others only once, i.e. only the 
final state of static equilibrium is considered. The value of 
the transferred load is unknown but it is clear that it will be 
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gle round, without the need for iterative processes and with 
mathematically exact results.

The study takes place in 3 phases. Phase 1 considers the ac-
tion of point exterior load applied to a reciprocal structure 
composed of a basic unit of 3 nexors. In phase 1 a generic 
equation is obtained to calculate the transfer coefficient, k, 
which makes it possible to know the loads which act on the 
members for any point load situation. Phase 2 considers the 
action of uniformly distributed exterior load on the same re-
ciprocal structure. In the same way, in phase 2 another ge-
neric analytical equation is obtained to calculate the transfer 
coefficient, k, for situations involving a uniformly distributed 
exterior load. In phase 3, an application example is shown for 
a more complex reciprocal structure composed of a 7 nexor 
basic unit, with a point load on one of them and a uniformly 
distributed load on another. The equations are subsequently 
extrapolated to a structure of n nexors.

The results obtained analytically in phases 1, 2 and 3 are com-
pared with the results shown by calculation software to verify 
the validity of the method. The verification of the analytical 
equations obtained is carried out using the Dlubal© software, 
version 5.21.02. For member-type elements (1D), this soft-
ware uses the Matrix Stiffness Method which proposes a final 
equilibrium of the system to obtain the internal forces and 
reactions from the displacement of nodes.

In the end, an experimental demostration is carried out for a 
basic unit of 3 nexors. For this purpose, a 10-gram weight is 
placed in the centre of a simple timber member of cross-sec-
tion 1x10 mm and span 420 mm, and the vertical deflection 
in the centre of the span is measured, Figure 3. The same op-
eration is repeated with a 20-gram weight. As the loads are 
small, the wood is in an elastic state and Hooke’s law is ver-
ified, i.e. the deflection is proportional to the applied load. 
Subsequently, the member is assembled together with 2 oth-
ers (with same properties and dimensions) to make a basic 
unit of 3 nexors. Again, a 10-gram weight is applied and the 
vertical deflection is measured at the centre of the span and at 
the end, Figures 4 and 5. To calculate the effective deflection 
at the centre of the span, half of the end deflection is subtract-
ed. The same operation is performed with a 20 gram weight.

This experimental verification consists of checking that the 
effective deflection suffered in the centre of the span by the 
member into reciprocal structure is the same as suffered 
when it is alone, but multiplied by 1 + k.

4. RESULTS AND DISCUSSION

4.1. Phase 1: Point load

Firstly, study centres on how a point load P is transmitted be-
tween the elements of a basic reciprocal structure composed 
of 3 members (or 3 nexors) L in length, joined together at 
their central points and with articulated supports at their ex-
terior ends, placing the load at the intersections between two 
members, Figure 6. The load is applied at the centre of mem-
ber 1, where, additionally, it is joined to member 2.

On the loaded member, a is the distance from the support 
to the point of application of the load, and b is the rest of 
the member (b = L-a). In this case, a = b = L/2. In all of the 

Figure 3. Vertical deflection in the centre of the span of a simple 
member.

Figure 4. Vertical deflection in the centre of the span of member 
into reciprocal structure.

Figure 5. Vertical deflection at the end of member into reciprocal 
structure.

directly proportional to the load applied, P, so it will take a 
value of kP, where k is called the “transfer coefficient” that 
the method aims to determine. The k value must be such that 
the balance of the whole structure can be established in a sin-
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members c is the distance from the support to the intersec-
tion with another member, and d is the distance between the 
intersections with both members (d = L-c). In this particular 
case, c = d = L/2.

As was pointed out above, the most intuitive way of ap-
proaching the problem would firstly involve considering that 
the load P on member 1 is distributed between its two ends, 
so that it transfers P/2 to the exterior support of the member, 
and P/2 to the next member, member 2. Member 2 would be 
loaded at its centre point with a load P/2, that would be dis-
tributed between the support and the connection with mem-
ber 3, each one of which would take P/4. This load P/4 on the 
central point of member 3 would be distributed between its 
support and the connection with member 1, with a value of 
P/8. This load transfer, which returns to the point of appli-
cation after passing through all of the members, would lead 
to member 1 losing the static balance that had been defined 
initially, so it would be necessary to repeat the same process 
for this load, P/8. It may therefore be deduced that the distri-
bution of loads in the structure would be an iterative process 
in which it would only be possible to achieve an approximate 
result, aiming for a value close to 0 for the “rest” of the undis-
tributed load, although never equal to 0 from a strictly math-
ematical point of view.

Figure 6. Basic unit of 3 nexors with P load centred on a member.

Applying the proposed method, the load at the centre of 
member 1 will be P+kP, which is symmetrically distribut-
ed between the exterior support and the intersection with 
member 2, P/2+kP/2. In member 2, both the exterior sup-
port and the intersection with member 3 will receive half of 
this load, P/4+kP/4, which in turn will transfer to its exterior 
support and the intersection with member 1, taking the value 
P/8+kP/8 to both ends. For the system to be in balance, the 
load deposited by member 3 in member 1 must be exactly the 
transferred load, kP. Finally, considering the static equilibri-
um, kP = P/8+kP/8, it is concluded that the transfer coeffi-
cient for this configuration has a value of 1/7.

To verify whether the approach is correct, this structure was 
modelled using the finite element software. In this, in a ba-
sic unit of 3 1000 mm members joined at their mid-points, a 
load of 1 N is placed at the centre of member 1, Figure 7.

The shear graph shows that the load applied by member 3, 
which is on member 1 at the point of application of the same, 
is 0.143 N, i.e., 1/7 P. This means that the reaction on the first 
support will be 0.571 N, that is, P/2+kP/2. On the following 
members, the load reaching them in each case is distributed 

equally between the exterior support and the interior support 
on the next member, until the final distribution which leaves 
1/7 on member 1. In this way, the load has been completely 
distributed in the structure without the need for an iterative 
process to discover how closely it approximates to reality.

The moments graph shows that the members are articulated 
at their exterior support as well as the intersection with the 
next member, and that in each of them the moment would 
correspond to an isostatic beam with two supports that sup-
ports the loads found by means of the previous procedure. 
We can therefore see that once the loads have been found, 
analysis of thestructure is simple and that there is no need to 
undertake deformation compatibility.

To verify the dependency of the transfer coefficient k on the 
position of the load and the point at which the members in-
tersect, the load is now placed on member 1 in any position, 
i.e., with parametric values of a and c, Figure 8. It should be 
pointed out that it is irrelevant whether the load P is located 
in the section of dimension c or in the interior polygon of the 
basic unit.

Figure 8. Basic unit of 3 nexors with P load in any position.

Figure 7. Shear and bending moment distribution in a basic unit of 
3 nexors connected by their midpoints, with point load centred on 

member 1 (external loads [N], support reactions [N], internal forces 
Vz [N] and My [Nmm], nexor length [mm]).
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P and the transferred load are now not applied at the same 
point. According to the principle of load superposition, the 
load which reaches each end of the member is the sum of 
the load corresponding to it for each one of the loads. Thus 
at the exterior support of member 1 Pb/L and kPd/L are 
obtained, while at the intersection with member 2, Pa/L 
and kPc/L are obtained.

After this point the load distributions no longer depend on 
a and b, but rather depend exclusively on c and d, which are 
the same on all of the members. Each load applied there-
fore leads to a reaction in the exterior support equal to the 
said load, by d/L, and on the next member, with a load by 
c/L. In this case, in which the basic unit has 3 members, 
the load which returns to the member is equal to Pa/L+k-
Pc/L multiplied twice by c/L, once for transmission from 
member 1 to member 2, and once for transmission from 
member 2 to member 3.

Proceeding in the same way as in the first example, kP is 
equal to the load obtained at this point, i.e., kP = c2/L2(Pa/
L+kPc/L), where the transmission coefficient is obtained, 
k = c2a/(L3-c3). The value of k is adimensional and depends 
on the c/L and a/L ratio.

The software is used again to perform the verification, but 
with a load that is not centred. Using the previous model, 
the load P of 1 N is displaced in such a way that a = 3L/4. 
The dimensions of the structure remain the same, so that 
c = L/2, Figure 9.

In this case, the shear graph shows that the load trans-
ferred by member 3 over member 1 is 0.214 N. If the equa-
tion k = c2a/(L3-c3) is applied, this gives k = 0.214. The 
reactions in the supports can also be checked, for example 
by taking the equation R2 = d/L(Pa/L+kPc/L) from Figure 
8, giving R2 = 0.429 N, which fits the value shown by the 
software.

Figure 9. Shear distribution in a basic unit of 3 nexors connected by 
their midpoints, with point load not centred on member 1 (exter-
nal loads [N], support reactions [N], internal forces Vz [N], nexor 

length [mm]).

Although work took place with basic 3-member units (or 
3 nexors), the process would continue in the same way for 
a greater number of members, multiplying by d/L in the 
exterior support and by c/L in the interior support on the 
next member. It is therefore possible to formulate the val-
ue of k for a generic case with n members, based on the 
load distribution pattern for member n, Figure 10.  

Figure 10. Load distribution on member n for a basic unit of n nexors.

In a reciprocal structure composed of a basic unit of n nexors 
of length L, subjected to a point load P in any position, the 
transferred load which returns to the first member is equal 
to an adimensional coefficient k multiplied by the load P ap-
plied, according to the expression [1].

[1] 

where k is the transfer coefficient, n the number of nexors, L 
the nexor length, a the distance of the load from the exterior 
support of the member on which it is applied, and c the dis-
tance from the intersection between members to the exterior 
support.

4.2. Phase 2: Uniformly distributed load

In structures of this type it is habitual for distributed loads to 
appear. These usually arise due to the working load consid-
ered by regulations, the self weight of the members compris-
ing the structure, or other elements that weigh on the same. 
Due to this, the way uniformly distributed load is transmitted 
in a reciprocal structure is analysed below.

To return to the basic 3-member (or 3 nexors) unit, a uniform-
ly distributed load q is considered on member 1, Figure 11. The 
transferred load which returns to member 1 will on this occa-
sion be kqL, as it is a point load. On member 1, as q is a dis-
tributed load, it will be transmitted symmetrically between the 
exterior support and the interior support on member 2, qL/2 
for each one. The corresponding distribution of load kqL will 
have to be added to this term, which in this case depends on c, 
where kqLd/L is the load on the exterior support and kqLc/L 
is the load on member 2, values that may be simplified as kqd 
and kqc, respectively. From here on the distribution is per-
formed in exactly the same way as it was in phase 1, given that 
point loads are distributed to the other members. Completing 
the distribution and finding the value of k, it is observed that 
this responds to the expression k = c2L/2(L3-c3).

Figure 11. Basic unit of 3 nexors with uniformly distributed q-load.
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To generalise, for a reciprocal structure composed of a ba-
sic unit of n nexor L in length,  subjected to a uniformly dis-
tributed load q, the transferred load that returns to the first 
member is equal to an adimensional coefficient k multiplied 
by qL, based on the expression [2].

[2] 

where k is the transfer coefficient, n the number of nexors, 
L the nexor length, and c the distance of the intersection be-
tween members and the exterior support.

In the same way, the analytically obtained value of k is compared 
with the value obtained using the software, but applying a uni-
formly distributed load of 1 N/mm on member 1. Dimensions of 
the structure remain the same, so that c = L/2, Figure 12.

Applying the analytical formula [2] to this particular case 
gives k = 1/7. The transferred load is therefore 142.857 N, as 
may be seen in the shear diagram.

Figure 12. Shear distribution in a basic unit of 3 nexors connected 
by their midpoints, with uniformly distributed load on one of their 
members (external loads [N/mm], support reactions [N], internal 

forces Vz [N], nexor length [mm]).

4.3. Phase 3: Application example

To verify the validity of formulas (1) and (2) a more complex 
particular example was used, consisting of a reciprocal struc-
ture composed of a basic 7-member unit with generic distances 
c and d. A point load P is considered, applied at any position on 
one of the members, and another uniformly distributed load q 
applied on another one of the members, Figure 13.

The distribution of loads P and q in the structure is totally 
independent, so that the transfer coefficient corresponding to 
each load is then found. In each case this will make it possible 
to find the transferred load that returns to the member sub-
jected to each one of the exterior loads.

The transfer coefficient k1 refers to point load P, while k2 is linked 
to load q. The load distribution throughout the structure is 
shown in figure 13, so that it is possible to analyse each one of the 
members based on the sums corresponding to both load states.

The graph shown in figure 14 is obtained by analysing the re-
actions in the exterior supports and shear distribution using 
the software. The conjoint action of a point load P of 2000 N 
applied on nexor 1 is considered, together with a distributed 
load q of 3 N/mm applied to nexor 3.

By applying equations [1] and [2] to this particular case 
the transfer coefficients are obtained, at k1 = 0.068 and k2 = 
0.103, respectively, so that the transferred loads amount to 
k1P = 137 N and k2qL = 924 N. Based on these values it is 
possible to find the loads in all of the members with the pa-
rameter values shown in figure 13. Thus and for example, the 
rise in the shear graph in nexor 1 at its intersection with nexor 
7 has an analytical value of k1P+c4/L4(qL/2+k2qc) = 1780 N, 
which corresponds with the value of the figure 14; the rise in 
the shear graph for nexor 6 at its intersection with nexor 5 
has a value of c4/L4(Pa/L+k1Pc/L)+c2/L2(qL/2+k2qc) = 3165 
N; and the reaction in the exterior support of nexor 4 has a 
value of R4 = dc2L3(Pa/L+k1Pc/L)+d/L(qL/2+k2qc) = 1406 N.

4.4. Experimental verification

Table 1 shows the results of the experimental tests.

Applying equation [1] for the experimental test conditions, 
i.e. for n = 3 nexors, L = 420 mm, a = 210 mm and c = 210 
mm; a transfer coefficient k = 0.14 is obtained. This value is 

Figure 13. Basic unit consisting of 7 nexors with any point load and 
any uniformly distributed load.

Figure 14. Shear distribution of a basic unit of 7 nexors with any 
point load and any uniformly distributed load (external loads [N] 
and [N/mm], support reactions [N], internal forces Vz [N], nexor 

length [mm]).
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the same as the effective transfer coefficient experimentally 
obtained, thus proving the validity of the analytical equations.

Tabla 1. Experimental determination of the transfer coefficient in 
basic unit of 3 nexors with a load centred on a member.

Measurement 
location

Deflection 
10-gram 
weight

Deflection 
20-gram 
weight

Simple 
member centre of the span 20 mm 40 mm

Member 
into re-
ciprocal 
structure

end of the span 14 mm 30 mm

centre of the span 30 mm 60 mm

centre of the span 
(effective)

30 – 14/2 = 
23 mm

60 – 30/2 = 
45 mm

Load increase between simple 
member and member into 
reciprocal structure

23/20 = 1.15 45/40 = 1.13

Transfer coefficent (k) 1.15 - 1 = 0.15 1.13 - 1 = 0.13

Average transfer coeffi-
cient (k) 0.14

4.5. Discussion

The analytical results obtained using equations [1] and [2] 
are identical to those shown by the Matrix Stiffness Method 
software, thereby verifying the proposed method. In addi-
tion, the analytical equation [1] was also verified by a simple 
experimental test.

Based on equations [1] and [2], it can be said that the greater 
the value of c, the greater will be coefficient k. This means 
that the smaller the central hollow in the reciprocal structure, 
the greater will be the transferred load, so that designing 
structures with larger hollows makes it possible to reduce the 
load increase on each member.

The exterior supports closest to the exterior load receive a 
higher proportion of the same. From equation [1] it may be 
deduced that when the value of a, is reduced, i.e., when the 
load is positioned closer to the exterior support, coefficient k 
also falls, reducing the load transferred between members. 
This is because a large proportion of the exterior load is 
transmitted directly to the exterior support.

On the other hand, it can be deduced from the method itself 
that the greater n is, the lesser will be coefficient k, i.e. the 
transferred load will be distributed among a larger number of 
members before returning to the initial member. Due to this, 
in reciprocal structures with a high number of nexors, each 
one of them will be subjected to less load.

5. CONCLUSIONS

This research work describes the development of a new meth-
od which makes it possible to understand and analytically 
quantify how loads are distributed among the members and 
supports of a flat reciprocal structure.

It is based on determining the increase in load to which the 
members of a reciprocal structure are subjected by calculat-
ing coefficient k or the transfer coefficient. This is given by 
equations [1] and [2] for point loads and uniformly distribut-
ed loads, respectively. Moreover, the superposition principle 
means that this method can be used for any combination of 
different loads in the members.

The value of coefficient k, and therefore the load transferred 
between members, falls with increasing numbers of nexors, 
with increasing proximity of point loads to the exterior sup-
ports, and with increasing size of the central hollow in the 
structure.

The present research work is limited to the study of a basic 
unit consisting of any number of nexors of the same length 
and with central symmetry. This basic unit can be subjected 
to any system of loads, either point and/or distributed loads.

In structures with more than one basic unit (multiplex, com-
plex, etc.) the reasoning used to determine the load transfer 
would be similar, but number of equations would increase 
considerably and will be the subject of future research.
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