Informes de la Construcción 75 (569)
enero-marzo 2023, e485
ISSN-L: 0020-0883, eISSN: 1988-3234
https://doi.org/10.3989/ic.92607

Prácticas de circularidad en la gestión de los Residuos de Construcción y Demolición en el sector de la construcción: una revisión bibliográfica de las estrategias y los elementos clave en su implementación

Circularity practices in the management of C&D waste in construction industry: a literature review of the strategies and key aspects about its implementation

Harlem Acevedo-Agudelo

PhD. Sostenibilidad, profesor asistente, Dpto. Ciencias ambientales y de la construcción. Instituto Tecnológico Metropolitano, Medellín (Colombia).

https://orcid.org/0000-0002-6574-855X

Jorge Figueroa-Álvarez

Asistente de investigación, Dpto. Ciencias ambientales y de la construcción. Instituto Tecnológico Metropolitano, Medellín (Colombia).

https://orcid.org/0000-0002-5989-0349

RESUMEN

La industria de la construcción es uno de los sectores con mayores impactos sociales, ambientales y económicos debido a la gran demanda de materias primas, al ser responsable de un importante gasto energético mundial, la generación de GEI como el CO2 y el agotamiento de los materiales litosféricos. La economía circular se convierte en un paradigma que permite la transición hacia nuevos modelos económicos. El presente artículo busca realizar una revisión bibliográfica sistemática contenida en bases de datos científicas de alto reconocimiento internacional sobre las prácticas de circularidad en la industria de la construcción. También contiene la caracterización de los autores, las palabras clave, los países y los journal más destacados según el número de publicaciones y su caracterización geográfica. En cuanto a las estrategias y categorías, existen elementos en común entre los autores y los resultados obtenidos, en su mayoría enfocados en las fases de planificación-diseño, construcción y demolición.

Palabras clave: 
RCD; gestión; ciclo de vida; economía circular; construcción; reciclaje.
ABSTRACT

Construction industry is one of the most sectors with social, environmental, and economic impacts due to the great demand of raw materials, as being responsible of an important worldwide energetic spend, generation of greenhouse gases as CO 2 and the lithospheric materials depletion. Circular economy turns into a paradigm that allow the transition towards new economic models. The present article has as purpose to make a bibliographic systematic review included in scientific data bases of high international recognize about those practices of circularity in the context of construction industry. It also contains the characterization among the authors, keywords, countries, and the most noted journals according to the number of the publications and its geographic characterization. In the case of the strategies and categories, it exists elements in common among the authors and the results obtained, most of them focused on the phases of design-planification, construction and demolition.

Keywords: 
C&D waste; management; life cycle; circular economy; construction; recycling.

Recibido/Received: 15/12/2021; Aceptado/Accepted: 03/10/2022; Publicado on-line/Published on-line: 23/03/2023

Cómo citar este artículo/Citation: Harlem Acevedo-Agudelo, Jorge Figueroa-Álvarez (2023). Prácticas de circularidad en la gestión de los Residuos de Construcción y Demolición en el sector de la construcción: una revisión bibliográfica de las estrategias y los elementos clave en su implementación. Informes de la Construcción, 75(569): e485. https://doi.org/10.3989/ic.92607

CONTENIDO

1. INTRODUCCIÓN

 

La industria de la construcción es responsable de un alto consumo de materias primas necesarias para la fabricación de materiales e insumos para la construcción de los diferentes proyectos y obras civiles, generando grandes cantidades de residuos de construcción y demolición (RCD) a nivel mundial, estimados entre un 35% y 40% de desechos totales que terminan en vertederos ilegales o sitios de disposición final sin ser aprovechados adecuadamente (1-4(1) Anastasiades, K., Goffin, J., Rinke, M., Buyle, M., Audenaert, A., & Blom, J. (2021). Standardisation: An essential enabler for the circular reuse of construction components? A trajectory for a cleaner European construction industry. Journal of Cleaner Production, 298. https://doi.org/10.1016/j.jclepro.2021.126864.
(2) Jain, M.S. (2021). A mini review on generation, handling, and initiatives to tackle construction and demolition waste in India. Environmental Technology and Innovation, 22. https://doi.org/10.1016/j.eti.2021.101490.
(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
(4) Spišáková, M., Mésároš, P., & Mandičák, T. (2021). Construction waste audit in the framework of sustainable waste management in construction projects-case study. Buildings, 11(2), 1-16. https://doi.org/10.3390/buildings11020061.
).

Por ello, se destaca la importancia del uso medido y consciente de los materiales en las etapas de construcción y remodelación, así como la oportunidad de disminuir los factores que pueden afectar los procesos de implementación de los planes para la gestión de RCD (5(5) Aslam, M. S., Huang, B., & Cui, L. (2020). Review of construction and demolition waste management in China and USA. Journal of Environmental Management, 264 (March). https://doi.org/10.1016/j.jenvman.2020.110445.
, 6(6) Rodríguez-Robles, D., García-González, J., Juan-Valdés, A., Morán-Del Pozo, J.M., & Guerra-Romero, M.I. (2014). Overview regarding construction and demolition waste in Spain. Environmental Technology (United Kingdom), 36(23), 3060-3070. https://doi.org/10.1080/09593330.2014.957247.
), con el objetivo de ampliar la expectativa de vida de los materiales e implementación de estrategias para la reutilización de RCD teniendo en cuenta los diferentes aspectos técnicos para mitigar los impactos desde etapas tempranas (7(7) López Ruiz, L. A., Roca Ramón, X., & Gassó Domingo, S. (2020). The circular economy in the construction and demolition waste sector - A review and an integrative model approach. Journal of Cleaner Production, 248. https://doi.org/10.1016/j.jclepro.2019.119238.
, 8(8) Chinda, T. (2016). Investigation of factors affecting a construction waste recycling decision. Civil Engineering and Environmental Systems, 33(3), 214-226. https://doi.org/10.1080/10286608.2016.1161030.
), dando paso al uso de tecnologías que permiten la coordinación conjunta de las diferentes partes que intervienen dichos procesos y etapas constructivas, reduciendo así, los impactos y mejorando la reutilización de los materiales (9-11(9) Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z., & Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263. https://doi.org/10.1016/j.jclepro.2020.121458.
(10) Charef, R., & Emmitt, S. (2021). Uses of building information modelling for overcoming barriers to a circular economy. Journal of Cleaner Production, 285. https://doi.org/10.1016/j.jclepro.2020.124854.
(11) Ganiyu, S.A., Oyedele, L.O., Akinade, O., Owolabi, H., Akanbi, L., & Gbadamosi, A. (2020). BIM competencies for delivering waste-efficient building projects in a circular economy. Developments in the Built Environment, 4, 100036. https://doi.org/10.1016/j.dibe.2020.100036.
).

Los recursos son limitados, es por ello que el reciclaje se convierte en una opción que aporta grandes beneficios a los diferentes sectores productivos en los ámbitos sociales, económicos y ambientales, es por ello que la economía circular se ha convertido en un paradigma actual que ha orientado a las partes que intervienen los diferentes procesos en el sector de la construcción, a repensar la manera por medio de la cual se implementan los planes de gestión de los residuos en obra y fuera de ella, logrando llenar vacíos y permitiendo la generación de marcos de evaluación para el aprovechamiento de los mismos (7(7) López Ruiz, L. A., Roca Ramón, X., & Gassó Domingo, S. (2020). The circular economy in the construction and demolition waste sector - A review and an integrative model approach. Journal of Cleaner Production, 248. https://doi.org/10.1016/j.jclepro.2019.119238.
, 12(12) Ghisellini, P., Ripa, M., & Ulgiati, S. (2018). Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. Journal of Cleaner Production, 178, 618-643. https://doi.org/10.1016/j.jclepro.2017.11.207.
). La reutilización de materiales provenientes de los RCD que pueden ser implementados en la fabricación de diferentes materias primas para la construcción de infraestructura vial y civil, pueden ser favorables para el mejoramiento de los procesos de gestión al interior de las obras, reduciendo la cantidad de residuos generados y mitigando los impactos ambientales y sociales y mejorando la economía local (13(13) Wu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Status quo and future directions of construction and demolition waste research: A critical review. Journal of Cleaner Production, 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163.
, 14(14) Gálvez-Martos, J.L., Styles, D., Schoenberger, H., & Zeschmar-Lahl, B. (2018a). Construction and demolition waste best management practice in Europe. Resources, Conservation and Recycling, 136, 166-178. https://doi.org/10.1016/j.resconrec.2018.04.016.
).

El apoyo de los gobiernos locales es indispensable para promover el reciclaje en obra ya que es necesario contar con equipos que faciliten la gestión de los RCD y las labores de los actores principales para así tener una coordinación en los diferentes procesos y de esta manera enfrentar las barreras y vacíos presentes en las prácticas actuales de separación y reciclaje (15-17(15) Bao, Z., Lee, W.M.W., & Lu, W. (2020). Implementing on-site construction waste recycling in Hong Kong: Barriers and facilitators. Science of the Total Environment, 747, 141091. https://doi.org/10.1016/j.scitotenv.2020.141091.
(16) Antwi-Afari, P., Ng, S.T., & Hossain, M.U. (2021). A review of the circularity gap in the construction industry through scientometric analysis. Journal of Cleaner Production, 298, 126870. https://doi.org/10.1016/j.jclepro.2021.126870.
(17) Wijewickrama, M.K.C.S., Rameezdeen, R., & Chileshe, N. (2021). Information brokerage for circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production, 313, 127938. https://doi.org/10.1016/j.jclepro.2021.127938.
). De este modo, las políticas públicas y las estrategias por parte del gobierno juegan un papel fundamental para el fomento de la conciencia y las actividades que ayudan a generar modelos económicos circulares (18(18) Barbudo, A., Ayuso, J., Lozano, A., Cabrera, M., & López-Uceda, A. (2020). Recommendations for the management of construction and demolition waste in treatment plants. Environmental Science and Pollution Research, 27(1), 125-132. https://doi.org/10.1007/s11356-019-05578-0.
, 19(19) Christensen, T. B. (2021). Towards a circular economy in cities: Exploring local modes of governance in the transition towards a circular economy in construction and textile recycling. Journal of Cleaner Production, 305, 127058. https://doi.org/10.1016/j.jclepro.2021.127058.
). Un ejemplo de esto es el reciclaje de los RCD, promovidos por las instituciones públicas y privadas, como un aspecto indispensable que permite la recuperación de gran parte de los desperdicios de las obras de construcción que se disponen en vertederos sin ser aprovechados.

La economía circular ha comenzado a tener una implementación más notoria en la política de la comisión europea, donde algunos países han comenzado a implementar el sistema de producción y consumo orientado hacia la circularidad (19(19) Christensen, T. B. (2021). Towards a circular economy in cities: Exploring local modes of governance in the transition towards a circular economy in construction and textile recycling. Journal of Cleaner Production, 305, 127058. https://doi.org/10.1016/j.jclepro.2021.127058.
, 20(20) Rajagopalan, N., Brancart, S., De Regel, S., Paduart, A., De Temmerman, N., & Debacker, W. (2021). Multi-criteria decision analysis using life cycle assessment and life cycle costing in circular building design: A case study for wall partitioning systems in the circular retrofit lab. Sustainability (Switzerland), 13(9), 5124. https://doi.org/10.3390/su13095124.
). En países como Escocia y Países Bajos, las empresas han comenzado a darle un nuevo uso a los productos y bienes que han sido desechados de manera que con sus tecnologías han optado por darles un segundo uso y reintroducirlos aumentando su valorización y la productividad de los recursos actuales (21(21) Morató, J., Tollin, N., & Jiménez, L. (2017). Situación y evolución de la economía circular en españa (Fundación). Madrid.
).

En el caso latinoamericano, Chile se posee experiencias interesantes respecto al reciclaje y aprovechamiento de materiales por medio de la ampliación de su ciclo de vida. Es así como Neptuno Pumps, una empresa privada se caracteriza por el reciclaje de los materiales para ser usados en su segunda vida, logrando disminuir en un 30% el precio final de sus productos y a través de sus diseños que asegura la reducción de agua en el sector minero en un 70% reduciendo el uso de la energía necesaria empleada (21(21) Morató, J., Tollin, N., & Jiménez, L. (2017). Situación y evolución de la economía circular en españa (Fundación). Madrid.
, 22(22) Gangolells, M., Casals, M., Forcada, N., & Macarulla, M. (2014). Analysis of the implementation of effective waste management practices in construction projects and sites. Resources, Conservation and Recycling, 93, 99-111. https://doi.org/10.1016/j.resconrec.2014.10.006.
). En general, este sistema aporta de manera significativa a un cambio en los modelos de producción de bienes y productos en cuanto que, por medio de pequeños cambios se puede lograr un impacto a nivel global, de manera que se tenga en cuenta la necesidad del aprovechamiento consciente y sostenible de los recursos para la sociedad actual y para las futuras generaciones (21, p. 25(21) Morató, J., Tollin, N., & Jiménez, L. (2017). Situación y evolución de la economía circular en españa (Fundación). Madrid.
).

A nivel de países en vía de desarrollo, como es el caso de Colombia, la generación de RCD se encuentra muy marcado por la actividad y el tamaño de los asentamientos. De este modo, ciudades con más de 2 millones de habitantes se convierten en los más críticos a la hora de generar estos residuos. No obstante, en poblaciones más pequeñas esta problemática también es destacable por lo que implica todos los retos para enfrentar esta gestión de residuos en el sector de la construcción local (23(23) Robayo Salazar, R.A., Mattey Centeno, P.E., Silva Urrego, Y.F., Burgos Galindo, D.M., & Delvasto Arjona, S. (2015). Los residuos de la construcción y demolición en la ciudad de Cali: un análisis hacia su gestión, manejo y aprovechamiento. Tecnura, 19(44), 157-170.
).

Según Suárez-Silgado et al., (24(24) Suárez-Silgado, S.S., Betancourt Quiroga, C., Molina Benavides, J., & Mahecha Vanegas, L. (2019). La gestión de los residuos de construcción y demolición en Villavicencio: estado actual, barreras e instrumentos de gestión. Entramado, 15(1), 224-244. https://doi.org/10.18041/1900-3803/entramado.1.5408.
), en las principales ciudades de Colombia son generados aproximadamente 22 millones de toneladas de RCD. Para contrarrestar esta problemática, ciudades como Bogotá, Medellín, Cali y Barranquilla, han estado gestionando el desarrollo e implementación de normativas y planes de gestión de los RCD para controlar la disposición final de los recursos en vertederos, en donde llega una gran cantidad de residuos los cuales no son aprovechados y generan una problemática a nivel ambiental, social y económico (21(21) Morató, J., Tollin, N., & Jiménez, L. (2017). Situación y evolución de la economía circular en españa (Fundación). Madrid.
, 24(24) Suárez-Silgado, S.S., Betancourt Quiroga, C., Molina Benavides, J., & Mahecha Vanegas, L. (2019). La gestión de los residuos de construcción y demolición en Villavicencio: estado actual, barreras e instrumentos de gestión. Entramado, 15(1), 224-244. https://doi.org/10.18041/1900-3803/entramado.1.5408.
). Sin embargo, esto no es suficiente en Colombia y en general en América latina ya que muchos de los recursos, aunque están separados no son aprovechados como se debería a causa de la omisión de los grandes y pequeños generadores urbanos, logrando perjudicar el entorno y aumentando el número de escombreras ilegales (24, p. 228(24) Suárez-Silgado, S.S., Betancourt Quiroga, C., Molina Benavides, J., & Mahecha Vanegas, L. (2019). La gestión de los residuos de construcción y demolición en Villavicencio: estado actual, barreras e instrumentos de gestión. Entramado, 15(1), 224-244. https://doi.org/10.18041/1900-3803/entramado.1.5408.
).

El presente artículo tiene como propósito analizar la información relacionada con las prácticas de circularidad en el sector de la construcción mediante una búsqueda sistemática de las publicaciones entorno a las estrategias de gestión de los RCD a nivel mundial, las prácticas de circularidad, análisis sectorial, tecnologías, tratamiento de materiales provenientes de diferentes fuentes, su relación con el ciclo de vida y las normativas o políticas locales de los gobiernos para promover, incentivar y sancionar a los actores principales que son quienes intervienen en el desarrollo de los proyectos constructivos (3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
, 25(25) Haas, M., Galler, R., Scibile, L., & Benedikt, M. (2020). Waste or valuable resource - a critical European review on re-using and managing tunnel excavation material. Resources, Conservation and Recycling, 162, 105048. https://doi.org/10.1016/j.resconrec.2020.105048.
). Lo anterior permitirá identificar el contexto y la caracterización de las principales publicaciones entorno a la gestión de los RCD en el ámbito internacional e igualmente, presentar de manera articulada diferentes perspectivas las prácticas de circularidad, con la finalidad de mejorar los procesos de gestión e implementación de estrategias para dar paso a las economías emergentes en el sector de la construcción (26(26) Liu, H., Long, H., & Li, X. (2020). Identification of critical factors in construction and demolition waste recycling by the grey-DEMATEL approach: a Chinese perspective. Environmental Science and Pollution Research, 27(8), 8507-8525. https://doi.org/10.1007/s11356-019-07498-5.
, 27(27) Rondinel-Oviedo, D.R. (2021). Construction and demolition waste management in developing countries: a diagnosis from 265 construction sites in the Lima Metropolitan Area. International Journal of Construction Management. https://doi.org/10.1080/15623599.2021.1874677.
).

2. RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN (RCD)

 

2.1. Contexto

 

Los residuos de demolición y construcción, son materialidades que producen deterioro paisajístico y ambiental de las zonas urbanas y rurales, sus efectos no son solamente presentados por su generación sino también por el manejo inadecuado que se le da al momento de la disposición de estos residuos, a causa de una falta de conciencia y análisis al respecto para que los mismos sean aprovechados de una mejor manera y sus ciclos productivos sean maximizados al igual que su valor, ya que en la mayoría de los casos no hay control y termina una gran cantidad de desechos sólidos en los vertederos o escombreras ilegales causando una afectación socio ambiental considerable (17(17) Wijewickrama, M.K.C.S., Rameezdeen, R., & Chileshe, N. (2021). Information brokerage for circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production, 313, 127938. https://doi.org/10.1016/j.jclepro.2021.127938.
, 28(28) Lederer, J., Gassner, A., Kleemann, F., & Fellner, J. (2020). Potentials for a circular economy of mineral construction materials and demolition waste in urban areas: a case study from Vienna. Resources, Conservation and Recycling, 161, 104942. https://doi.org/10.1016/j.resconrec.2020.104942.
).

La construcción es una actividad importante para el fomento del empleo, el desarrollo del país y de las ciudades, en la última década ha tenido un crecimiento favorable esta actividad pero a su vez han aumentado las cantidades de RCD generados a partir de actividades como demolición, remodelación, restauración y mantenimiento de edificios, viviendas e infraestructura y se ha convertido en un reto de gran importancia para las comunidades del sector público y privado en su camino para producir de manera más limpia, disminuyendo los impactos y las cifras de residuos sólidos dispuestos de manera inapropiada en los diferentes ecosistemas (29, pp. 74-75(29) Universidad Industrial de Santander, & Unidad de planeación minero Energética. (2018). Realizar un análisis del potencial de reutilización de minerales en colombia y definir estrategias orientadas a fomentar su aprovechamiento por parte de la industria en el país bajo el enfoque de economía circularcontrato interadministrativo Ci-049-2018. Noviembre, (3), 468. Retrieved from http://www.andi.com.co/Uploads/Documento Análisis Nacional.pdf.
).

La carencia de recursos para mejorar dicha problemática hace que los nuevos proyectos de emprendimiento sean más difíciles de desarrollar en un sistema que sea aplicable e integral en todos los ámbitos, además el desconocimiento por parte de las personas al momento de hacer una gestión integral de los residuos sólidos hace que las empresas y los actores a quienes les preocupa el tema, busquen implementar soluciones o planes de acción para generar conciencia en las personas de modo que se pueda convertir en un modelo para el máximo aprovechamiento de los recursos (30, p. 10(30) Soto, E.P., Restrepo, D.P., Subdirector, M., Diana, A., Castro, F., Líder, H., Villada, S. (2016). Plan de gestión integral de residuos sólidos regional del área metropólitana del valle de aburrá. Acodal Seccional Noroccidente, 95.
).

2.2. Actividades de la gestión integral de RCD

 

Los RCD, son materiales con grandes posibilidades de ser reciclados gracias a la composición que poseen y a la materia prima potencialmente aprovechable (30(30) Soto, E.P., Restrepo, D.P., Subdirector, M., Diana, A., Castro, F., Líder, H., Villada, S. (2016). Plan de gestión integral de residuos sólidos regional del área metropólitana del valle de aburrá. Acodal Seccional Noroccidente, 95.
). Si se realiza una adecuada separación los resultados pueden ser favorables, de lo contrario la cantidad de materiales desperdiciados que pueden terminar en escombreras ilegales o sitios de disposición final pueden ser desalentadores en cuanto el volumen desaprovechado; de otra forma al realizar una separación correcta, se puede prolongar la vida de los materiales y darles un valor agregado en la cadena productiva aumentando los ciclos de vida por medio de economías sostenibles con objetivos de cero emisiones de residuos (31(31) Guerrero Cruz, J.A. (2019). Guía técnica para la implementación de la resolución 0472/2017 - residuos generados en las actividades de construcción y demolición con énfasis en las obligaciones de la autoridad ambiental en Villavicencio, 8(5), 55.
).

Las afectaciones debido a las prácticas inadecuadas a la hora de la separación de los RCD repercuten; por ejemplo, sobre el paisajismo, los lechos de los ríos, las cuencas hídricas, los rellenos sanitarios; que a su vez contribuyen a otras problemáticas ambientales y al calentamiento global (30(30) Soto, E.P., Restrepo, D.P., Subdirector, M., Diana, A., Castro, F., Líder, H., Villada, S. (2016). Plan de gestión integral de residuos sólidos regional del área metropólitana del valle de aburrá. Acodal Seccional Noroccidente, 95.
).

Teniendo en cuenta la importancia de las buenas prácticas que se deben realizar, se precisa de actores responsables en el manejo integral de los residuos. De esta manera, se hace necesario diseñar planes de acción por medio de los cuales se fortalezca la conciencia acerca de esta problemática con los RCD y su adecuado manejo; para reducir en la medida de lo posible, el desperdicio de los materiales o materias primas que pueden ser potencialmente utilizados o incorporados en nuevos proyectos constructivos.

2.3. Aprovechamiento

 

El sector de la construcción debido a sus prácticas tradicionales en la manera de ejecutar proyectos de infraestructura tiene una gran demanda de materias primas que corresponden a la categoría de recursos no renovables y a su vez, el proceso mediante el cual se realiza la extracción genera ciertas problemáticas de índole ambiental y social debido a los impactos en los entornos intervenidos (29(29) Universidad Industrial de Santander, & Unidad de planeación minero Energética. (2018). Realizar un análisis del potencial de reutilización de minerales en colombia y definir estrategias orientadas a fomentar su aprovechamiento por parte de la industria en el país bajo el enfoque de economía circularcontrato interadministrativo Ci-049-2018. Noviembre, (3), 468. Retrieved from http://www.andi.com.co/Uploads/Documento Análisis Nacional.pdf.
).

A su vez, por medio de prácticas de circularidad que no afectan sustancialmente los presupuestos y costes de producción, tales como el aprovechamiento de los residuos de la obra para la fabricación de nuevos materiales, la industria de la construcción tiene el potencial de reducir de manera significativa los impactos negativos en el ambiente resultantes de dicha actividad como los gases de efecto invernadero y la generación de residuos sólidos (29, p. 43(29) Universidad Industrial de Santander, & Unidad de planeación minero Energética. (2018). Realizar un análisis del potencial de reutilización de minerales en colombia y definir estrategias orientadas a fomentar su aprovechamiento por parte de la industria en el país bajo el enfoque de economía circularcontrato interadministrativo Ci-049-2018. Noviembre, (3), 468. Retrieved from http://www.andi.com.co/Uploads/Documento Análisis Nacional.pdf.
). Es decir que la implementación de prácticas de sostenibilidad y circularidad, aportan significativamente para mejorar los procesos mediante los cuales se busca generar la menor cantidad de desechos en los vertederos y ayudar a la prolongación de vida útil de las materias primas.

3. METODOLOGÍA

 

Para la realización del presente estudio se implementó un método de análisis descriptivo y cuantitativo, mediante una revisión bibliográfica centrada en la búsqueda de información relacionada con la gestión de los RCD en la industria de la construcción, los retos, barreras, oportunidades y demás aspectos importantes para poder mejorar aquellas estrategias que permiten una transición a nuevos modelos económicos sostenibles, con miras a la reducción de los impactos sociales, ambientales y económicos y convirtiendo a los mercados actuales en potenciales competidores sobre todo en países desarrollados y en vía de desarrollo.

Inicialmente, se realizó la búsqueda de los artículos en cinco bases de datos de alto reconocimiento como son, Science Direct, Francys & Taylor, Scopus, Springerlink y Web of Science, con la ecuación de búsqueda de acuerdo con las siguientes palabras clave: (Construction and demolition waste) AND (circular economy) AND (strategies OR measures) AND (stakeholder). Para esta búsqueda se recolectaron artículos científicos originales y de revisión, dentro del periodo comprendido entre los años 2000 y 2021.

Posteriormente, se identificaron 564 artículos, los cuales fueron examinados para una mejor comprensión conforme al relacionamiento de su contenido inicial con la finalidad de la revisión bibliográfica, para lo cual se estudió, el título y las palabras clave, en esta fase se descartaron 217 artículos duplicados (ver Figura 1). Seguidamente, en la fase de análisis, de los 347 artículos recopilados se descartaron 142 por revisión preliminar del resumen y la introducción de acuerdo con la relación directa con el objeto de este estudio, para así llegar a una fase de evaluación con 205 artículos de los cuales 74 fueron descartados teniendo en cuenta los criterios de selección: a) se presentan medidas o iniciativas locales o regionales de la gestión de los RCD enmarcadas en la economía circular; b) se encuentran estudios de acciones o percepciones de los actores involucrados en la gestión de los RCD; c) Se cuenta con artículos completos , para así llegar a la fase final de selección con 131 artículos con los que se realizaron el análisis completo para extraer la información necesaria y así cumplir con los objetivos planteados.

medium/medium-IC-75-569-e485-gf1.png
Figura 1.  Metodología de la investigación.

4. RESULTADOS Y DISCUSIÓN

 

4.1. Análisis descriptivo de la revisión bibliográfica

 

De acuerdo con la contribución de las revistas científicas en el artículo con mayor cantidad de publicaciones, se destaca el top de las cinco con mayor número: Journal of cleaner production (28 artículos), Resources, Conservation & Recycling (12 artículos), Sustainability (11 artículos), Environmental Science and Pollution Research (8 artículos) y Waste, Management (6 artículos). Estas cinco publicaciones representan el 49,6% respecto a la selección total de los artículos (ver Figura 2).

medium/medium-IC-75-569-e485-gf2.png
Figura 2.  Top 5 de las publicaciones científicas por número de artículos seleccionados.

En la actual revisión bibliográfica se tuvo en cuenta la selección de 131 artículos, 22 de revisión y 109 originales, los cuales fueron analizados según los criterios de selección. La búsqueda se restringió en un rango de años comprendido entre 2000 y 2021; sin embargo, al realizar la selección final se obtuvo que los artículos fueron publicados desde el año 2010 hasta el 2021 (sólo hasta agosto de 2021), teniendo una mayor cantidad en los años 2019 a 2021 con presencia de 12, 48 y 46 respectivamente. Por otro lado, en la Figura 3, se observa que en los años 2011 y 2015 no se presentaron publicaciones. En contraste, el 80,9% de los artículos pertenecen a estudios publicados recientemente entre el año 2019 y agosto de 2021.

medium/medium-IC-75-569-e485-gf3.png
Figura 3.  Artículos publicados entre 2010 y 2021 (Sólo hasta el mes de agosto de 2021).

En la Figura 4, se detalla la relación entre el número de publicaciones y la región geográfica, de acuerdo con el top cinco con las regiones con mayor presencia así: China (31(31) Guerrero Cruz, J.A. (2019). Guía técnica para la implementación de la resolución 0472/2017 - residuos generados en las actividades de construcción y demolición con énfasis en las obligaciones de la autoridad ambiental en Villavicencio, 8(5), 55.
), Australia (13(13) Wu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Status quo and future directions of construction and demolition waste research: A critical review. Journal of Cleaner Production, 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163.
), UE (Unión Europea) (13(13) Wu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Status quo and future directions of construction and demolition waste research: A critical review. Journal of Cleaner Production, 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163.
), España (9(9) Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z., & Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263. https://doi.org/10.1016/j.jclepro.2020.121458.
), Italia (9(9) Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z., & Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263. https://doi.org/10.1016/j.jclepro.2020.121458.
), el cual representa el 75,8% del total de la muestra. De los demás países o regiones participantes de la revisión que representan el 24,2%, 12 poseen entre 2 y 7 (Asia, Bélgica, Brasil, Estados Unidos, Francia, Países Bajos, India, Luxemburgo, Portugal, Reino Unido, Suiza, Vietnam) y otros 12 países cuentan con al menos 1 artículo (Canadá, Catar, Croacia, Dinamarca, Eslovaquia, Finlandia, Irán, México, Noruega, Perú, República checa, Somalia). La determinación del país o la región de las publicaciones obedeció a la localización donde se enfocó el tema de la investigación.

medium/medium-IC-75-569-e485-gf4.png
Figura 4.  Top 5 del número de publicaciones por región geográfica.

Respecto a la participación de los autores dentro de la selección de artículos, se halló que en las 131 publicaciones se encuentran relacionados 454 autores diferentes, de los cuales 406 sólo participaron en una publicación. Adicionalmente, de los 48 autores restantes, se identificó que 11 de ellos habían participado en 3 o más oportunidades, estos son los casos de: Weisheng Lu (9(9) Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z., & Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263. https://doi.org/10.1016/j.jclepro.2020.121458.
), Zhikang Bao (7(7) López Ruiz, L. A., Roca Ramón, X., & Gassó Domingo, S. (2020). The circular economy in the construction and demolition waste sector - A review and an integrative model approach. Journal of Cleaner Production, 248. https://doi.org/10.1016/j.jclepro.2019.119238.
), Hongping Yuan (5(5) Aslam, M. S., Huang, B., & Cui, L. (2020). Review of construction and demolition waste management in China and USA. Journal of Environmental Management, 264 (March). https://doi.org/10.1016/j.jenvman.2020.110445.
), Jiayuan Wang (4(4) Spišáková, M., Mésároš, P., & Mandičák, T. (2021). Construction waste audit in the framework of sustainable waste management in construction projects-case study. Buildings, 11(2), 1-16. https://doi.org/10.3390/buildings11020061.
), Beijia Huang (3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
), Bo Yu (3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
), Jianli Hao (3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
), Paola Villoria Saez (3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
), Patrizia Ghisellini (3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
), Sergio Ulgiati (3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
) y Vivian W.Y. Tam (3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
). En la Figura 5, se detalla una nube de palabras para la representación de la participación de los autores.

medium/medium-IC-75-569-e485-gf5.png
Figura 5.  Relación entre autores y su número de publicaciones.

Al recolectar las palabras clave para conocer el número de ocurrencia en las publicaciones en general, se creó un Word Cloud donde aparecen las palabras clave con un tamaño proporcional respecto a la cantidad de reiteración en las diferentes publicaciones. Conforme a lo anterior, se obtuvieron las siguientes relaciones: Construction and Demolition Waste {66}, Circular economy {52}, Waste management {50}, Recycling {24}, Construction industry {12}, Recycled product {12}, Sustainability {12}, Life cycle sustainability assessment {10}, Construction and demolition waste management {9}. En total 339 palabras clave fueron incluidas, de la cuales 277 aparecen al menos 1 vez, lo que corresponde al 81,7% y 62 aparecen 2 o más veces 18,3%, las palabras con mayor ocurrencia; construction and demolition waste, circular economy y waste management, corresponden al 19,5%, 15,3% y 14,8% respectivamente (ver Figura 6).

medium/medium-IC-75-569-e485-gf6.png
Figura 6.  Palabras clave por su nivel de aparición en las publicaciones.

4.2. Prácticas de circularidad a partir de la revisión bibliográfica

 

Inicialmente, en la recolección y estudio de las estrategias se conformaron cinco categorías que respondieron a los enfoques o abordajes presentados, tales como, recolección de prácticas de circularidad, análisis sectorial, tecnología, materiales y Normativa-política. De este modo, las estrategias fueron agrupadas de acuerdo con los abordajes de los autores en los artículos por la categoría correspondiente. De este modo, se logró evidenciar las prácticas y herramientas llevadas a cabo en los diferentes países, tanto desarrollados como en vía de desarrollo para el mejoramiento de los procesos mediante los cuales se gestionan los RCD. Lo anterior con el fin de lograr el máximo aprovechamiento y el aumento del valor al incrementar las expectativas de vida de los edificios y los materiales, fomentando el crecimiento económico y la generación de cero residuos en obra (32(32) Gethsemane Akhimi, N., Latfi, E., & Shan Shan, H. (2020). Application of circular economy principles in buildings: A systematic review. Journal of Building Engineering, 44, 24-27.
, 33(33) Laovisutthichai, V., Lu, W., & Bao, Z. (2020). Design for construction waste minimization: guidelines and practice. Architectural Engineering and Design Management. 18(3), 279-298. https://doi.org/10.1080/17452007.2020.1862043.
).

El diseño es una etapa del proceso constructivo que permite mejorar los planes de gestión de manejo integral de los RCD y comprender el comportamiento de los materiales empleados en las obras, a su vez se puede estimar la cantidad probable de residuos generados durante el ciclo de vida especialmente cuando este ha cumplido su tiempo de vida útil, mediante la implementación de estrategias que permiten la recolección de información proyectada (34(34) Eberhardt, L.C.M., Birkved, M., & Birgisdottir, H. (2020). Building design and construction strategies for a circular economy. Architectural Engineering and Design Management, 18(2), 93-113. https://doi.org/10.1080/17452007.2020.1781588.
, 35(35) Superti, V., Houmani, C., Hansmann, R., Baur, I., & Binder, C.R. (2021). Strategies for a circular economy in the construction and demolition sector: Identifying the factors affecting the recommendation of recycled concrete. Sustainability (Switzerland), 13(8), 4113. https://doi.org/10.3390/su13084113.
). Esto permite la posibilidad del análisis de la cantidad de residuos de construcción y demolición generado e identificación de estrategias para mitigar los impactos sociales, ambientales y económicos y da paso a la generación de recomendaciones para fortalecer la normativa vigente en la generación de una conciencia que fortalezca las prácticas de circularidad dentro de las organizaciones (36(36) Ghisellini, P., Ji, X., Liu, G., & Ulgiati, S. (2018). Evaluating the transition towards cleaner production in the construction and demolition sector of China: A review. Journal of Cleaner Production, 195, 418-434. https://doi.org/10.1016/j.jclepro.2018.05.084.
, 37(37) Purnell, P. (2017). On a voyage of recovery: a review of the UK’s resource recovery from waste infrastructure. Sustainable and Resilient Infrastructure, 4(1), 1-20. https://doi.org/10.1080/23789689.2017.1405654.
).

El reciclaje de los RCD es una práctica indispensable que permite la recuperación de gran parte de los desperdicios que terminan en vertederos sin ser reutilizados (38(38) Fořt, J., & Černý, R. (2020). Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Management, 118, 510-520. https://doi.org/10.1016/j.wasman.2020.09.004.
, 39(39) Chen, Y., & Zhou, Y. (2020). The contents and release behavior of heavy metals in construction and demolition waste used in freeway construction. Environmental Science and Pollution Research, 27(1), 1078-1086. https://doi.org/10.1007/s11356-019-07067-w.
); es por ello, que las políticas públicas y las estrategias por parte del gobierno juegan un papel fundamental para el fomento de las actividades que ayudan a la generación de modelos económicos circulares y el reúso de los materiales a lo largo del proceso constructivo y de la vida útil de las obras. De esta manera se resalta su importancia, ya que permite el aprovechamiento y la disminución de impactos negativos en el ambiente, mediante la reducción de la cantidad de materias primas utilizadas para la creación de nuevos productos empleados en la industria de la construcción (18(18) Barbudo, A., Ayuso, J., Lozano, A., Cabrera, M., & López-Uceda, A. (2020). Recommendations for the management of construction and demolition waste in treatment plants. Environmental Science and Pollution Research, 27(1), 125-132. https://doi.org/10.1007/s11356-019-05578-0.
, 40-42(40) Park, J., & Tucker, R. (2016). Overcoming barriers to the reuse of construction waste material in Australia: a review of the literature. International Journal of Construction Management, 17(3), 228-237. https://doi.org/10.1080/15623599.2016.1192248.
(41) Chen, K., Wang, J., Yu, B., Wu, H., & Zhang, J. (2021). Critical evaluation of construction and demolition waste and associated environmental impacts: A scientometric analysis. Journal of Cleaner Production, 287, 125071. https://doi.org/10.1016/j.jclepro.2020.125071.
(42) Bigolin, M., Danilevicz, Â.D.M.F., Weiss, M.A., & Silva Filho, L.C.P. (2021). Sustainable new product development: a decision-making tool for the construction industry. International Journal of Sustainable Engineering, 14(4), 618-629. https://doi.org/10.1080/19397038.2021.1920642.
). En la Tabla 1 se especifican las diferentes estrategias respecto a la categoría y a las fuentes asociadas.

Tabla 1.  Análisis de las estrategias por artículo.
Categoría Estrategia Fuente
Recolección de prácticas de circularidad Instrumento de recolección de la información para la valoración sostenible de los RCD (61(61) Kim, S.Y. (2020). A performance evaluation framework for construction and demolition waste management : stakeholder perspectives. Engineering, Construction and Architectural Management, 27(10), 3189-3213. https://doi.org/10.1108/ECAM-12-2019-0683.
, 62(62) Llinares-Millán, C., Fernández-Plazaola, I., Hidalgo-Delgado, F., Martínez-Valenzuela, M.M., Medina-Ramón, F.J., Oliver-Faubel, I., Tort-Ausina, I. (2014). Construction and building research. Construction and Building Research, 1-553. https://doi.org/10.1007/978-94-007-7790-3.
)
Recolección de prácticas de circularidad para enfrentar los retos de la industria de la construcción (4(4) Spišáková, M., Mésároš, P., & Mandičák, T. (2021). Construction waste audit in the framework of sustainable waste management in construction projects-case study. Buildings, 11(2), 1-16. https://doi.org/10.3390/buildings11020061.
, 5(5) Aslam, M. S., Huang, B., & Cui, L. (2020). Review of construction and demolition waste management in China and USA. Journal of Environmental Management, 264 (March). https://doi.org/10.1016/j.jenvman.2020.110445.
, 16(16) Antwi-Afari, P., Ng, S.T., & Hossain, M.U. (2021). A review of the circularity gap in the construction industry through scientometric analysis. Journal of Cleaner Production, 298, 126870. https://doi.org/10.1016/j.jclepro.2021.126870.
, 20(20) Rajagopalan, N., Brancart, S., De Regel, S., Paduart, A., De Temmerman, N., & Debacker, W. (2021). Multi-criteria decision analysis using life cycle assessment and life cycle costing in circular building design: A case study for wall partitioning systems in the circular retrofit lab. Sustainability (Switzerland), 13(9), 5124. https://doi.org/10.3390/su13095124.
, 40(40) Park, J., & Tucker, R. (2016). Overcoming barriers to the reuse of construction waste material in Australia: a review of the literature. International Journal of Construction Management, 17(3), 228-237. https://doi.org/10.1080/15623599.2016.1192248.
, 43(43) Mahpour, A. (2018). Prioritizing barriers to adopt circular economy in construction and demolition waste management. Resources, Conservation and Recycling, 134, 216-227. https://doi.org/10.1016/j.resconrec.2018.01.026.
, 52(52) Bonoli, A., Zanni, S., & Serrano-Bernardo, F. (2021). Sustainability in building and construction within the framework of circular cities and european new green deal. The contribution of concrete recycling. Sustainability (Switzerland), 13(4), 1-16. https://doi.org/10.3390/su13042139.
, 63-65(63) Munaro, M.R., Tavares, S.F., & Bragança, L. (2020). Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. Journal of Cleaner Production, 260, 121134. https://doi.org/10.1016/j.jclepro.2020.121134.
(64) Bilal, M., Khan, K.I.A., Thaheem, M.J., & Nasir, A.R. (2020). Current state and barriers to the circular economy in the building sector: Towards a mitigation framework. Journal of Cleaner Production, 276, 123250. https://doi.org/10.1016/j.jclepro.2020.123250.
(65) Negash, Y.T., Hassan, A.M., Tseng, M.L., Wu, K.J., & Ali, M.H. (2021). Sustainable construction and demolition waste management in Somaliland: Regulatory barriers lead to technical and environmental barriers. Journal of Cleaner Production, 297, 126717. https://doi.org/10.1016/j.jclepro.2021.126717.
, 66-75(66) Akinade, O., Oyedele, L., Oyedele, A., Davila Delgado, J.M., Bilal, M., Akanbi, L., Owolabi, H. (2019). Design for deconstruction using a circular economy approach: barriers and strategies for improvement. Production Planning and Control, 31(10), 829-840. https://doi.org/10.1080/09537287.2019.1695006.
(67) Esa, M.R., Halog, A., & Rigamonti, L. (2017a). Developing strategies for managing construction and demolition wastes in Malaysia based on the concept of circular economy. Journal of Material Cycles and Waste Management, 19(3), 1144-1154. https://doi.org/10.1007/s10163-016-0516-x.
(68) Kabirifar, K., Mojtahedi, M., Wang, C., & Tam, V.W.Y. (2020). Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. Journal of Cleaner Production, 263, 121265. https://doi.org/10.1016/j.jclepro.2020.121265.
(69) Cristiano, S., Ghisellini, P., D’Ambrosio, G., Xue, J., Nesticò, A., Gonella, F., & Ulgiati, S. (2021). Construction and demolition waste in the Metropolitan City of Naples, Italy: State of the art, circular design, and sustainable planning opportunities. Journal of Cleaner Production, 293, 125856. https://doi.org/10.1016/j.jclepro.2021.125856.
(70) Guerra, B. C., & Leite, F. (2021). Circular economy in the construction industry: An overview of United States stakeholders’ awareness, major challenges, and enablers. Resources, Conservation and Recycling, 170, 105617. https://doi.org/10.1016/j.resconrec.2021.105617.
(71) Superti, V., Houmani, C., & Binder, C. R. (2021). A systemic framework to categorize Circular Economy interventions: An application to the construction and demolition sector. Resources, Conservation and Recycling, 173, 105711. https://doi.org/10.1016/j.resconrec.2021.105711.
(72) Ranjbari, M., Saidani, M., Shams Esfandabadi, Z., Peng, W., Lam, S. S., Aghbashlo, M., Tabatabaei, M. (2021). Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. Journal of Cleaner Production, 314, 128009. https://doi.org/10.1016/j.jclepro.2021.128009.
(73) Caldera, S., Ryley, T., & Zatyko, N. (2020). Enablers and barriers for creating a marketplace for construction and demolition waste: A systematic literature review. Sustainability (Switzerland), 12(23), 1-19. https://doi.org/10.3390/su12239931.
(74) Mirzaie, S., Thuring, M., & Allacker, K. (2020). End-of-life modelling of buildings to support more informed decisions towards achieving circular economy targets. International Journal of Life Cycle Assessment, 25(11), 2122-2139. https://doi.org/10.1007/s11367-020-01807-8.
(75) Yu, A.T.W., Wong, I., Wu, Z., & Poon, C.S. (2021). Strategies for effective waste reduction and management of building construction projects in highly urbanized cities- a case study of hong kong. Buildings, 11(5), 1-14. https://doi.org/10.3390/buildings11050214.
)
Recopilación de estrategias sostenibles para disminuir los impactos en el ambiente debidos al uso de los materiales de construcción (7(7) López Ruiz, L. A., Roca Ramón, X., & Gassó Domingo, S. (2020). The circular economy in the construction and demolition waste sector - A review and an integrative model approach. Journal of Cleaner Production, 248. https://doi.org/10.1016/j.jclepro.2019.119238.
, 12(12) Ghisellini, P., Ripa, M., & Ulgiati, S. (2018). Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. Journal of Cleaner Production, 178, 618-643. https://doi.org/10.1016/j.jclepro.2017.11.207.
, 45(45) Priti, & Mandal, K. (2019). Review on evolution of municipal solid waste management in India: practices, challenges and policy implications. Journal of Material Cycles and Waste Management, 21(6), 1263-1279. https://doi.org/10.1007/s10163-019-00880-y.
, 46(46) Górecki, J., Núñez-Cacho, P., Corpas-Iglesias, F.A., & Molina, V. (2019). How to convince players in construction market? Strategies for effective implementation of circular economy in construction sector. Cogent Engineering, 6(1), 1690760. https://doi.org/10.1080/23311916.2019.1690760.
, 76-81(76) Villoria Sáez, P., & Osmani, M. (2019). A diagnosis of construction and demolition waste generation and recovery practice in the European Union. Journal of Cleaner Production, 241. https://doi.org/10.1016/j.jclepro.2019.118400.
(77) Passos, J., Alves, O., & Brito, P. (2020). Management of municipal and construction and demolition wastes in Portugal: future perspectives through gasification for energetic valorisation. International Journal of Environmental Science and Technology, 17(5), 2907-2926. https://doi.org/10.1007/s13762-020-02656-6.
(78) Asgari, A., Ghorbanian, T., Yousefi, N., Dadashzadeh, D., Khalili, F., Bagheri, A., Mahvi, A.H. (2017). Quality and quantity of construction and demolition waste in Tehran. Journal of Environmental Health Science and Engineering, 15(1), 1-8. https://doi.org/10.1186/s40201-017-0276-0.
(79) Joensuu, T., Edelman, H., & Saari, A. (2020). Circular economy practices in the built environment. Journal of Cleaner Production, 276, 124215. https://doi.org/10.1016/j.jclepro.2020.124215.
(80) Rodrigues, C., & Freire, F. (2021). Environmental impacts and costs of residential building retrofits - What matters? Sustainable Cities and Society, 67, 102733. https://doi.org/10.1016/j.scs.2021.102733.
(81) Mak, T.M.W., Yu, I.K.M., Wang, L., Hsu, S.C., Tsang, D.C.W., Li, C.N., Poon, C.S. (2019). Extended theory of planned behaviour for promoting construction waste recycling in Hong Kong. Waste Management, 83, 161-170. https://doi.org/10.1016/j.wasman.2018.11.016.
, 82(82) Iodice, S., Garbarino, E., Cerreta, M., & Tonini, D. (2021). Sustainability assessment of Construction and Demolition Waste management applied to an Italian case. Waste Management, 128, 83-98. https://doi.org/10.1016/j.wasman.2021.04.031.
)
Recolección de prácticas de gestión de RCD para la optimización de procesos en obra (1(1) Anastasiades, K., Goffin, J., Rinke, M., Buyle, M., Audenaert, A., & Blom, J. (2021). Standardisation: An essential enabler for the circular reuse of construction components? A trajectory for a cleaner European construction industry. Journal of Cleaner Production, 298. https://doi.org/10.1016/j.jclepro.2021.126864.
, 3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
, 17-19(17) Wijewickrama, M.K.C.S., Rameezdeen, R., & Chileshe, N. (2021). Information brokerage for circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production, 313, 127938. https://doi.org/10.1016/j.jclepro.2021.127938.
(18) Barbudo, A., Ayuso, J., Lozano, A., Cabrera, M., & López-Uceda, A. (2020). Recommendations for the management of construction and demolition waste in treatment plants. Environmental Science and Pollution Research, 27(1), 125-132. https://doi.org/10.1007/s11356-019-05578-0.
(19) Christensen, T. B. (2021). Towards a circular economy in cities: Exploring local modes of governance in the transition towards a circular economy in construction and textile recycling. Journal of Cleaner Production, 305, 127058. https://doi.org/10.1016/j.jclepro.2021.127058.
, 26(26) Liu, H., Long, H., & Li, X. (2020). Identification of critical factors in construction and demolition waste recycling by the grey-DEMATEL approach: a Chinese perspective. Environmental Science and Pollution Research, 27(8), 8507-8525. https://doi.org/10.1007/s11356-019-07498-5.
, 27(27) Rondinel-Oviedo, D.R. (2021). Construction and demolition waste management in developing countries: a diagnosis from 265 construction sites in the Lima Metropolitan Area. International Journal of Construction Management. https://doi.org/10.1080/15623599.2021.1874677.
, 32-34(32) Gethsemane Akhimi, N., Latfi, E., & Shan Shan, H. (2020). Application of circular economy principles in buildings: A systematic review. Journal of Building Engineering, 44, 24-27.
(33) Laovisutthichai, V., Lu, W., & Bao, Z. (2020). Design for construction waste minimization: guidelines and practice. Architectural Engineering and Design Management. 18(3), 279-298. https://doi.org/10.1080/17452007.2020.1862043.
(34) Eberhardt, L.C.M., Birkved, M., & Birgisdottir, H. (2020). Building design and construction strategies for a circular economy. Architectural Engineering and Design Management, 18(2), 93-113. https://doi.org/10.1080/17452007.2020.1781588.
, 36(36) Ghisellini, P., Ji, X., Liu, G., & Ulgiati, S. (2018). Evaluating the transition towards cleaner production in the construction and demolition sector of China: A review. Journal of Cleaner Production, 195, 418-434. https://doi.org/10.1016/j.jclepro.2018.05.084.
, 44(44) Ghaffar, S. H., Burman, M., & Braimah, N. (2020). Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. Journal of Cleaner Production, 244, 118710. https://doi.org/10.1016/j.jclepro.2019.118710.
, 47(47) Calvo, N., Varela-Candamio, L., & Novo-Corti, I. (2014). A dynamic model for construction and demolition (C&D) waste management in Spain: Driving policies based on economic incentives and tax penalties. Sustainability (Switzerland), 6(1), 416-435. https://doi.org/10.3390/su6010416.
, 58(58) Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36-44. https://doi.org/10.1016/j.resconrec.2017.09.029.
, 83-88(83) Kabirifar, K., Mojtahedi, M., Changxin Wang, C., & Vivian W.Y.T. (2020). A conceptual foundation for effective construction and demolition waste management. Cleaner Engineering and Technology, 1, 100019. https://doi.org/10.1016/j.clet.2020.100019.
(84) Esa, M.R., Halog, A., & Rigamonti, L. (2017b). Strategies for minimizing construction and demolition wastes in Malaysia. Resources, Conservation and Recycling, 120, 219-229. https://doi.org/10.1016/j.resconrec.2016.12.014.
(85) Bao, Z., Lu, W., & Hao, J. (2021). Tackling the “last mile” problem in renovation waste management: A case study in China. Science of the Total Environment, 790, 148261. https://doi.org/10.1016/j.scitotenv.2021.148261.
(86) Esguícero, F.J., Deus, R.M., Battistelle, R., Martins, B.L., & Bezerra, B.S. (2021). Construction and demolition waste management process modeling: a framework for the Brazilian context. Journal of Material Cycles and Waste Management, 23(5), 2037-2050. https://doi.org/10.1007/s10163-021-01247-y.
(87) Verhagen, T.J., Sauer, M.L., Voet, E. van der, & Sprecher, B. (2021). Matching demolition and construction material flows, an urban mining case study. Sustainability (Switzerland), 13(2), 1-14. https://doi.org/10.3390/su13020653.
(88) Mhatre, P., Gedam, V., Unnikrishnan, S., & Verma, S. (2020). Circular economy in built environme t - Literature review and theory development. Journal of Building Engineering, 35, 101995. https://doi.org/10.1016/j.jobe.2020.101995.
)
Recopilación de prácticas de reciclaje de RCD para la incorporación en elementos constructivos (2(2) Jain, M.S. (2021). A mini review on generation, handling, and initiatives to tackle construction and demolition waste in India. Environmental Technology and Innovation, 22. https://doi.org/10.1016/j.eti.2021.101490.
, 13(13) Wu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Status quo and future directions of construction and demolition waste research: A critical review. Journal of Cleaner Production, 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163.
, 25(25) Haas, M., Galler, R., Scibile, L., & Benedikt, M. (2020). Waste or valuable resource - a critical European review on re-using and managing tunnel excavation material. Resources, Conservation and Recycling, 162, 105048. https://doi.org/10.1016/j.resconrec.2020.105048.
, 39(39) Chen, Y., & Zhou, Y. (2020). The contents and release behavior of heavy metals in construction and demolition waste used in freeway construction. Environmental Science and Pollution Research, 27(1), 1078-1086. https://doi.org/10.1007/s11356-019-07067-w.
, 87(87) Verhagen, T.J., Sauer, M.L., Voet, E. van der, & Sprecher, B. (2021). Matching demolition and construction material flows, an urban mining case study. Sustainability (Switzerland), 13(2), 1-14. https://doi.org/10.3390/su13020653.
, 89-93(89) Bertino, G., Kisser, J., Zeilinger, J., Langergraber, G., Fischer, T., & Österreicher, D. (2021). Fundamentals of building deconstruction as a circular economy strategy for the reuse of construction materials. Applied Sciences (Switzerland), 11(3), 1-31. https://doi.org/10.3390/app11030939.
(90) Mercante, I.T., Bovea, M.D., Ibáñez-Forés, V., & Arena, A.P. (2012). Life cycle assessment of construction and demolition waste management systems: A Spanish case study. International Journal of Life Cycle Assessment, 17(2), 232-241. https://doi.org/10.1007/s11367-011-0350-2.
(91) Borbon-Galvez, Y., Curi, S., Dallari, F., & Ghiringhelli, G. (2021). International industrial symbiosis: Cross-border management of aggregates and construction and demolition waste between Italy and Switzerland. Sustainable Production and Consumption, 25, 312-324. https://doi.org/10.1016/j.spc.2020.09.004.
(92) Tazi, N., Idir, R., & Ben Fraj, A. (2020). Towards achieving circularity in residential building materials: Potential stock, locks and opportunities. Journal of Cleaner Production, 281, 124489. https://doi.org/10.1016/j.jclepro.2020.124489.
(93) Vitale, F., & Nicolella, M. (2021). Mortars with recycled aggregates from building-related processes: A ‘four-step’ methodological proposal for a review. Sustainability (Switzerland), 13(5), 1-32. https://doi.org/10.3390/su13052756.
, 94(94) Hale, S. E., Roque, A. J., Okkenhaug, G., Sørmo, E., Lenoir, T., Carlsson, C., Žlender, B. (2021). The reuse of excavated soils from construction and demolition projects: Limitations and possibilities. Sustainability (Switzerland), 13(11), 1-15. https://doi.org/10.3390/su13116083.
)
Análisis sectorial Diagnóstico regional de las problemáticas asociadas a los RCD (19(19) Christensen, T. B. (2021). Towards a circular economy in cities: Exploring local modes of governance in the transition towards a circular economy in construction and textile recycling. Journal of Cleaner Production, 305, 127058. https://doi.org/10.1016/j.jclepro.2021.127058.
, 78(78) Asgari, A., Ghorbanian, T., Yousefi, N., Dadashzadeh, D., Khalili, F., Bagheri, A., Mahvi, A.H. (2017). Quality and quantity of construction and demolition waste in Tehran. Journal of Environmental Health Science and Engineering, 15(1), 1-8. https://doi.org/10.1186/s40201-017-0276-0.
, 82(82) Iodice, S., Garbarino, E., Cerreta, M., & Tonini, D. (2021). Sustainability assessment of Construction and Demolition Waste management applied to an Italian case. Waste Management, 128, 83-98. https://doi.org/10.1016/j.wasman.2021.04.031.
, 86(86) Esguícero, F.J., Deus, R.M., Battistelle, R., Martins, B.L., & Bezerra, B.S. (2021). Construction and demolition waste management process modeling: a framework for the Brazilian context. Journal of Material Cycles and Waste Management, 23(5), 2037-2050. https://doi.org/10.1007/s10163-021-01247-y.
, 91(91) Borbon-Galvez, Y., Curi, S., Dallari, F., & Ghiringhelli, G. (2021). International industrial symbiosis: Cross-border management of aggregates and construction and demolition waste between Italy and Switzerland. Sustainable Production and Consumption, 25, 312-324. https://doi.org/10.1016/j.spc.2020.09.004.
, 95-97(95) Huang, B., Gao, X., Xu, X., Song, J., Geng, Y., Sarkis, J., Nakatani, J. (2020). A life cycle thinking framework to mitigate the environmental impact of building materials. One Earth, 3(5), 564-573. https://doi.org/10.1016/j.oneear.2020.10.010.
(96) Santos, M.T., Lamego, P., & Frade, P. (2017). Management options for construction and demolition wastes from residential recuperation. Waste and Biomass Valorization, 8(5), 1679-1687. https://doi.org/10.1007/s12649-016-9675-1.
(97) Arm, M., Wik, O., Engelsen, C.J., Erlandsson, M., Hjelmar, O., & Wahlström, M. (2017). How does the european recovery target for construction & demolition waste affect resource management? Waste and Biomass Valorization, 8(5), 1491-1504. https://doi.org/10.1007/s12649-016-9661-7.
)
Recolección de parámetros para la gestión de los RCD en mercados sostenibles (55(55) Collivignarelli, M.C., Cillari, G., Ricciardi, P., Miino, M.C., Torretta, V., Rada, E.C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1-34. https://doi.org/10.3390/SU12197903.
, 73(73) Caldera, S., Ryley, T., & Zatyko, N. (2020). Enablers and barriers for creating a marketplace for construction and demolition waste: A systematic literature review. Sustainability (Switzerland), 12(23), 1-19. https://doi.org/10.3390/su12239931.
, 98-101(98) Su, Y., Si, H., Chen, J., & Wu, G. (2020). Promoting the sustainable development of the recycling market of construction and demolition waste: A stakeholder game perspective. Journal of Cleaner Production, 277, 122281. https://doi.org/10.1016/j.jclepro.2020.122281.
(99) Luciano, A., Cutaia, L., Cioffi, F., & Sinibaldi, C. (2021). Demolition and construction recycling unified management: the DECORUM platform for improvement of resource efficiency in the construction sector. Environmental Science and Pollution Research, 28(19), 24558-24569. https://doi.org/10.1007/s11356-020-09513-6.
(100) Jesus, S., Pederneiras, C.M., Farinha, C.B., de Brito, J., & Veiga, R. (2021). Reduction of the cement content by incorporation of fine recycled aggregates from construction and demolition waste in rendering mortars. Infrastructures, 6(1), 1-16. https://doi.org/10.3390/infrastructures6010011.
(101) Taboada, G.L., Seruca, I., Sousa, C., & Pereira, Á. (2020). Exploratory data analysis and data envelopment analysis of construction and demolitionwaste management in the European economic area. Sustainability (Switzerland), 12(12), 4995. https://doi.org/10.3390/su12124995.
)
Relacionamiento de casos con economía circular y actores en la cadena de valor de los materiales (37(37) Purnell, P. (2017). On a voyage of recovery: a review of the UK’s resource recovery from waste infrastructure. Sustainable and Resilient Infrastructure, 4(1), 1-20. https://doi.org/10.1080/23789689.2017.1405654.
, 42(42) Bigolin, M., Danilevicz, Â.D.M.F., Weiss, M.A., & Silva Filho, L.C.P. (2021). Sustainable new product development: a decision-making tool for the construction industry. International Journal of Sustainable Engineering, 14(4), 618-629. https://doi.org/10.1080/19397038.2021.1920642.
, 46-48(46) Górecki, J., Núñez-Cacho, P., Corpas-Iglesias, F.A., & Molina, V. (2019). How to convince players in construction market? Strategies for effective implementation of circular economy in construction sector. Cogent Engineering, 6(1), 1690760. https://doi.org/10.1080/23311916.2019.1690760.
(47) Calvo, N., Varela-Candamio, L., & Novo-Corti, I. (2014). A dynamic model for construction and demolition (C&D) waste management in Spain: Driving policies based on economic incentives and tax penalties. Sustainability (Switzerland), 6(1), 416-435. https://doi.org/10.3390/su6010416.
(48) Gerding, D.P., Wamelink, H., & Leclercq, E.M. (2021). Implementing circularity in the construction process: a case study examining the reorganization of multi-actor environment and the decision-making process. Construction Management and Economics, 39(7), 617-635. https://doi.org/10.1080/01446193.2021.1934885.
, 63(63) Munaro, M.R., Tavares, S.F., & Bragança, L. (2020). Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. Journal of Cleaner Production, 260, 121134. https://doi.org/10.1016/j.jclepro.2020.121134.
, 65(65) Negash, Y.T., Hassan, A.M., Tseng, M.L., Wu, K.J., & Ali, M.H. (2021). Sustainable construction and demolition waste management in Somaliland: Regulatory barriers lead to technical and environmental barriers. Journal of Cleaner Production, 297, 126717. https://doi.org/10.1016/j.jclepro.2021.126717.
, 80(80) Rodrigues, C., & Freire, F. (2021). Environmental impacts and costs of residential building retrofits - What matters? Sustainable Cities and Society, 67, 102733. https://doi.org/10.1016/j.scs.2021.102733.
, 81(81) Mak, T.M.W., Yu, I.K.M., Wang, L., Hsu, S.C., Tsang, D.C.W., Li, C.N., Poon, C.S. (2019). Extended theory of planned behaviour for promoting construction waste recycling in Hong Kong. Waste Management, 83, 161-170. https://doi.org/10.1016/j.wasman.2018.11.016.
, 102(102) Sparrevik, M., de Boer, L., Michelsen, O., Skaar, C., Knudson, H., & Fet, A.M. (2021). Circular economy in the construction sector: advancing environmental performance through systemic and holistic thinking. Environment Systems and Decisions, 41(3), 392-400. https://doi.org/10.1007/s10669-021-09803-5.
)
Análisis del potencial de los materiales minerales y RCD para fomentar el reciclaje y las ventajas económicas, sociales y ambientales (28(28) Lederer, J., Gassner, A., Kleemann, F., & Fellner, J. (2020). Potentials for a circular economy of mineral construction materials and demolition waste in urban areas: a case study from Vienna. Resources, Conservation and Recycling, 161, 104942. https://doi.org/10.1016/j.resconrec.2020.104942.
, 97(97) Arm, M., Wik, O., Engelsen, C.J., Erlandsson, M., Hjelmar, O., & Wahlström, M. (2017). How does the european recovery target for construction & demolition waste affect resource management? Waste and Biomass Valorization, 8(5), 1491-1504. https://doi.org/10.1007/s12649-016-9661-7.
, 103(103) Lockrey, S., Nguyen, H., Crossin, E., & Verghese, K. (2016). Recycling the construction and demolition waste in Vietnam: opportunities and challenges in practice. Journal of Cleaner Production, 133, 757-766. https://doi.org/10.1016/j.jclepro.2016.05.175.
)
Realización de entrevistas a organizaciones de diversas actividades en el sector de la construcción como piezas claves para el adecuado manejo de los RCD (8(8) Chinda, T. (2016). Investigation of factors affecting a construction waste recycling decision. Civil Engineering and Environmental Systems, 33(3), 214-226. https://doi.org/10.1080/10286608.2016.1161030.
, 15(15) Bao, Z., Lee, W.M.W., & Lu, W. (2020). Implementing on-site construction waste recycling in Hong Kong: Barriers and facilitators. Science of the Total Environment, 747, 141091. https://doi.org/10.1016/j.scitotenv.2020.141091.
, 18(18) Barbudo, A., Ayuso, J., Lozano, A., Cabrera, M., & López-Uceda, A. (2020). Recommendations for the management of construction and demolition waste in treatment plants. Environmental Science and Pollution Research, 27(1), 125-132. https://doi.org/10.1007/s11356-019-05578-0.
, 22(22) Gangolells, M., Casals, M., Forcada, N., & Macarulla, M. (2014). Analysis of the implementation of effective waste management practices in construction projects and sites. Resources, Conservation and Recycling, 93, 99-111. https://doi.org/10.1016/j.resconrec.2014.10.006.
, 26(26) Liu, H., Long, H., & Li, X. (2020). Identification of critical factors in construction and demolition waste recycling by the grey-DEMATEL approach: a Chinese perspective. Environmental Science and Pollution Research, 27(8), 8507-8525. https://doi.org/10.1007/s11356-019-07498-5.
, 27(27) Rondinel-Oviedo, D.R. (2021). Construction and demolition waste management in developing countries: a diagnosis from 265 construction sites in the Lima Metropolitan Area. International Journal of Construction Management. https://doi.org/10.1080/15623599.2021.1874677.
, 44(44) Ghaffar, S. H., Burman, M., & Braimah, N. (2020). Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. Journal of Cleaner Production, 244, 118710. https://doi.org/10.1016/j.jclepro.2019.118710.
, 49(49) Lu, W., & Yuan, H. (2010). Exploring critical success factors for waste management in construction projects of China. Resources, Conservation and Recycling, 55(2), 201-208. https://doi.org/10.1016/j.resconrec.2010.09.010.
, 70(70) Guerra, B. C., & Leite, F. (2021). Circular economy in the construction industry: An overview of United States stakeholders’ awareness, major challenges, and enablers. Resources, Conservation and Recycling, 170, 105617. https://doi.org/10.1016/j.resconrec.2021.105617.
, 71(71) Superti, V., Houmani, C., & Binder, C. R. (2021). A systemic framework to categorize Circular Economy interventions: An application to the construction and demolition sector. Resources, Conservation and Recycling, 173, 105711. https://doi.org/10.1016/j.resconrec.2021.105711.
, 75(75) Yu, A.T.W., Wong, I., Wu, Z., & Poon, C.S. (2021). Strategies for effective waste reduction and management of building construction projects in highly urbanized cities- a case study of hong kong. Buildings, 11(5), 1-14. https://doi.org/10.3390/buildings11050214.
, 76(76) Villoria Sáez, P., & Osmani, M. (2019). A diagnosis of construction and demolition waste generation and recovery practice in the European Union. Journal of Cleaner Production, 241. https://doi.org/10.1016/j.jclepro.2019.118400.
, 84(84) Esa, M.R., Halog, A., & Rigamonti, L. (2017b). Strategies for minimizing construction and demolition wastes in Malaysia. Resources, Conservation and Recycling, 120, 219-229. https://doi.org/10.1016/j.resconrec.2016.12.014.
, 85(85) Bao, Z., Lu, W., & Hao, J. (2021). Tackling the “last mile” problem in renovation waste management: A case study in China. Science of the Total Environment, 790, 148261. https://doi.org/10.1016/j.scitotenv.2021.148261.
, 104-106(104) Bao, Z., & Lu, W. (2020). Developing efficient circularity for construction and demolition waste management in fast emerging economies: Lessons learned from Shenzhen, China. Science of the Total Environment, 724, 1-9. https://doi.org/10.1016/j.scitotenv.2020.138264.
(105) Lu, W., Bao, Z., Lee, W.M.W., Chi, B., & Wang, J. (2021). An analytical framework of “zero waste construction site”: Two case studies of Shenzhen, China. Waste Management, 121, 343-353. https://doi.org/10.1016/j.wasman.2020.12.029.
(106) Bao, Z., & Lu, W. (2021). A decision-support framework for planning construction waste recycling: A case study of Shenzhen, China. Journal of Cleaner Production, 309, 127449. https://doi.org/10.1016/j.jclepro.2021.127449.
)
Tecnología Uso de herramientas y metodologías tecnológicas (BIM-GIS) para la gestión sostenible de los RCD (10(10) Charef, R., & Emmitt, S. (2021). Uses of building information modelling for overcoming barriers to a circular economy. Journal of Cleaner Production, 285. https://doi.org/10.1016/j.jclepro.2020.124854.
, 11(11) Ganiyu, S.A., Oyedele, L.O., Akinade, O., Owolabi, H., Akanbi, L., & Gbadamosi, A. (2020). BIM competencies for delivering waste-efficient building projects in a circular economy. Developments in the Built Environment, 4, 100036. https://doi.org/10.1016/j.dibe.2020.100036.
, 49(49) Lu, W., & Yuan, H. (2010). Exploring critical success factors for waste management in construction projects of China. Resources, Conservation and Recycling, 55(2), 201-208. https://doi.org/10.1016/j.resconrec.2010.09.010.
, 50(50) Zhao, X. (2021). Stakeholder-associated factors influencing construction and demolition waste management: a systematic review. Buildings, 11(149), 1-22. https://doi.org/10.3390/buildings11040149.
, 107(107) Augiseau, V., & Kim, E. (2021). Spatial characterization of construction material stocks: The case of the Paris region. Resources, Conservation and Recycling, 170, 105512. https://doi.org/10.1016/j.resconrec.2021.105512.
)
Simulación asistida para la evaluación del comportamiento en la toma de decisiones aplicables a las prácticas de gestión de RCD (10(10) Charef, R., & Emmitt, S. (2021). Uses of building information modelling for overcoming barriers to a circular economy. Journal of Cleaner Production, 285. https://doi.org/10.1016/j.jclepro.2020.124854.
, 11(11) Ganiyu, S.A., Oyedele, L.O., Akinade, O., Owolabi, H., Akanbi, L., & Gbadamosi, A. (2020). BIM competencies for delivering waste-efficient building projects in a circular economy. Developments in the Built Environment, 4, 100036. https://doi.org/10.1016/j.dibe.2020.100036.
, 49(49) Lu, W., & Yuan, H. (2010). Exploring critical success factors for waste management in construction projects of China. Resources, Conservation and Recycling, 55(2), 201-208. https://doi.org/10.1016/j.resconrec.2010.09.010.
, 50(50) Zhao, X. (2021). Stakeholder-associated factors influencing construction and demolition waste management: a systematic review. Buildings, 11(149), 1-22. https://doi.org/10.3390/buildings11040149.
, 57(57) L. Du, Y. Feng, W. Lu, L. Kong, and Z. Yang (2020). Evolutionary game analysis of stakeholders’ decision-making behaviours in construction and demolition waste management. Environmental Impact Assessment Review, 84, 106408. https://doi.org/10.1016/j.eiar.2020.106408.
, 71(71) Superti, V., Houmani, C., & Binder, C. R. (2021). A systemic framework to categorize Circular Economy interventions: An application to the construction and demolition sector. Resources, Conservation and Recycling, 173, 105711. https://doi.org/10.1016/j.resconrec.2021.105711.
, 99(99) Luciano, A., Cutaia, L., Cioffi, F., & Sinibaldi, C. (2021). Demolition and construction recycling unified management: the DECORUM platform for improvement of resource efficiency in the construction sector. Environmental Science and Pollution Research, 28(19), 24558-24569. https://doi.org/10.1007/s11356-020-09513-6.
, 108(108) Liu, J., Liu, Y., & Wang, X. (2020). An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou. Environmental Science and Pollution Research, 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.
, 109(109) Davis, P., Aziz, F., Newaz, M.T., Sher, W., & Simon, L. (2021). The classification of construction waste material using a deep convolutional neural network. Automation in Construction, 122, 103481. https://doi.org/10.1016/j.autcon.2020.103481.
)
Materiales Análisis de estrategias para la reutilización de RCD de alta y mediana calidad (89(89) Bertino, G., Kisser, J., Zeilinger, J., Langergraber, G., Fischer, T., & Österreicher, D. (2021). Fundamentals of building deconstruction as a circular economy strategy for the reuse of construction materials. Applied Sciences (Switzerland), 11(3), 1-31. https://doi.org/10.3390/app11030939.
, 98(98) Su, Y., Si, H., Chen, J., & Wu, G. (2020). Promoting the sustainable development of the recycling market of construction and demolition waste: A stakeholder game perspective. Journal of Cleaner Production, 277, 122281. https://doi.org/10.1016/j.jclepro.2020.122281.
)
Análisis de beneficios de la utilización de RCD para la fabricación de concretos, mediante una matriz DOFA (110(110) Hahladakis, J. N., Purnell, P., & Aljabri, H. M. S. J. (2020). Assessing the role and use of recycled aggregates in the sustainable management of construction and demolition waste via a mini-review and a case study. Waste Management and Research, 38(4), 460-471. https://doi.org/10.1177/0734242X19897816.
)
Sustitución parcial con agregados reciclados en la fabricación de materiales para la construcción (11(11) Ganiyu, S.A., Oyedele, L.O., Akinade, O., Owolabi, H., Akanbi, L., & Gbadamosi, A. (2020). BIM competencies for delivering waste-efficient building projects in a circular economy. Developments in the Built Environment, 4, 100036. https://doi.org/10.1016/j.dibe.2020.100036.
, 13(13) Wu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Status quo and future directions of construction and demolition waste research: A critical review. Journal of Cleaner Production, 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163.
, 20(20) Rajagopalan, N., Brancart, S., De Regel, S., Paduart, A., De Temmerman, N., & Debacker, W. (2021). Multi-criteria decision analysis using life cycle assessment and life cycle costing in circular building design: A case study for wall partitioning systems in the circular retrofit lab. Sustainability (Switzerland), 13(9), 5124. https://doi.org/10.3390/su13095124.
, 42(42) Bigolin, M., Danilevicz, Â.D.M.F., Weiss, M.A., & Silva Filho, L.C.P. (2021). Sustainable new product development: a decision-making tool for the construction industry. International Journal of Sustainable Engineering, 14(4), 618-629. https://doi.org/10.1080/19397038.2021.1920642.
, 51(51) Amine Laadila, M., LeBihan, Y., Caron, R.F., & Vaneeckhaute, C. (2021). Construction, renovation and demolition (CRD) wastes contaminated by gypsum residues: Characterization, treatment and valorization. Waste Management, 120, 125-135. https://doi.org/10.1016/j.wasman.2020.11.031.
, 52(52) Bonoli, A., Zanni, S., & Serrano-Bernardo, F. (2021). Sustainability in building and construction within the framework of circular cities and european new green deal. The contribution of concrete recycling. Sustainability (Switzerland), 13(4), 1-16. https://doi.org/10.3390/su13042139.
, 54(54) Caneda-martínez, L., Monasterio, M., Moreno-juez, J., Martínez-ramírez, S., García, R., & Frías, M. (2021). Behaviour and properties of eco-cement pastes elaborated with recycled concrete powder from construction and demolition wastes. Materials, 14(5), 1-19. https://doi.org/10.3390/ma14051299.
, 55(55) Collivignarelli, M.C., Cillari, G., Ricciardi, P., Miino, M.C., Torretta, V., Rada, E.C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1-34. https://doi.org/10.3390/SU12197903.
, 71(71) Superti, V., Houmani, C., & Binder, C. R. (2021). A systemic framework to categorize Circular Economy interventions: An application to the construction and demolition sector. Resources, Conservation and Recycling, 173, 105711. https://doi.org/10.1016/j.resconrec.2021.105711.
, 87(87) Verhagen, T.J., Sauer, M.L., Voet, E. van der, & Sprecher, B. (2021). Matching demolition and construction material flows, an urban mining case study. Sustainability (Switzerland), 13(2), 1-14. https://doi.org/10.3390/su13020653.
, 92(92) Tazi, N., Idir, R., & Ben Fraj, A. (2020). Towards achieving circularity in residential building materials: Potential stock, locks and opportunities. Journal of Cleaner Production, 281, 124489. https://doi.org/10.1016/j.jclepro.2020.124489.
, 93(93) Vitale, F., & Nicolella, M. (2021). Mortars with recycled aggregates from building-related processes: A ‘four-step’ methodological proposal for a review. Sustainability (Switzerland), 13(5), 1-32. https://doi.org/10.3390/su13052756.
, 100(100) Jesus, S., Pederneiras, C.M., Farinha, C.B., de Brito, J., & Veiga, R. (2021). Reduction of the cement content by incorporation of fine recycled aggregates from construction and demolition waste in rendering mortars. Infrastructures, 6(1), 1-16. https://doi.org/10.3390/infrastructures6010011.
, 111-117(111) Lockrey, S., Verghese, K., Crossin, E., & Nguyen, H. (2018). Concrete recycling life cycle flows and performance from construction and demolition waste in Hanoi. Journal of Cleaner Production, 179, 593-604. https://doi.org/10.1016/j.jclepro.2017.12.271.
(112) Pathak, A., Kumar, S., & Jha, V.K. (2014). Development of building material from geopolymerization of Construction and Demolition Waste (CDW). Transactions of the Indian Ceramic Society, 73(2), 133-137. https://doi.org/10.1080/0371750X.2014.922429.
(113) Ferdous, W., Manalo, A., Siddique, R., Mendis, P., Zhuge, Y., Wong, H.S., Schubel, P. (2021). Recycling of landfill wastes (tyres, plastics and glass) in construction - A review on global waste generation, performance, application and future opportunities. Resources, Conservation and Recycling, 173, 105745. https://doi.org/10.1016/j.resconrec.2021.105745.
(114) Cal, B.F. De, Garrido-Marijuan, A., Eguiarte, O., Arregi, B., Romero-Amorrortu, A., Mezzasalma, G., Bernardi, A. (2021). Energy performance assessment of innovative building solutions coming from construction and demolition waste materials. Materials, 14(5), 1-15. https://doi.org/10.3390/ma14051226.
(115) Nodehi, M., & Mohamad Taghvaee, V. (2021). Sustainable concrete for circular economy: a review on use of waste glass. Glass Structures and Engineering, 7, 3-22. https://doi.org/10.1007/s40940-021-00155-9.
(116) Foster, G., Kreinin, H., & Stagl, S. (2020). The future of circular environmental impact indicators for cultural heritage buildings in Europe. Environmental Sciences Europe, 32(1), 141. https://doi.org/10.1186/s12302-020-00411-9.
(117) Frankovič, A., Ducman, V., Dolenec, S., Panizza, M., Tamburini, S., Natali, M., Bernardi, A. (2020). Up-scaling and performance assessment of façade panels produced from construction and demolition waste using alkali activation technology. Construction and Building Materials, 262, 120475. https://doi.org/10.1016/j.conbuildmat.2020.120475.
, 118(118) Ulsen, C., Antoniassi, J.L., Martins, I.M., & Kahn, H. (2021). High quality recycled sand from mixed CDW - Is that possible? Journal of Materials Research and Technology, 12, 29-42. https://doi.org/10.1016/j.jmrt.2021.02.057.
)
Identificación de procesos, tratamientos y equipos requeridos para la incorporación de RCD en la fabricación de insumos para la construcción (25(25) Haas, M., Galler, R., Scibile, L., & Benedikt, M. (2020). Waste or valuable resource - a critical European review on re-using and managing tunnel excavation material. Resources, Conservation and Recycling, 162, 105048. https://doi.org/10.1016/j.resconrec.2020.105048.
, 39(39) Chen, Y., & Zhou, Y. (2020). The contents and release behavior of heavy metals in construction and demolition waste used in freeway construction. Environmental Science and Pollution Research, 27(1), 1078-1086. https://doi.org/10.1007/s11356-019-07067-w.
, 52(52) Bonoli, A., Zanni, S., & Serrano-Bernardo, F. (2021). Sustainability in building and construction within the framework of circular cities and european new green deal. The contribution of concrete recycling. Sustainability (Switzerland), 13(4), 1-16. https://doi.org/10.3390/su13042139.
, 55(55) Collivignarelli, M.C., Cillari, G., Ricciardi, P., Miino, M.C., Torretta, V., Rada, E.C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1-34. https://doi.org/10.3390/SU12197903.
, 77(77) Passos, J., Alves, O., & Brito, P. (2020). Management of municipal and construction and demolition wastes in Portugal: future perspectives through gasification for energetic valorisation. International Journal of Environmental Science and Technology, 17(5), 2907-2926. https://doi.org/10.1007/s13762-020-02656-6.
, 90(90) Mercante, I.T., Bovea, M.D., Ibáñez-Forés, V., & Arena, A.P. (2012). Life cycle assessment of construction and demolition waste management systems: A Spanish case study. International Journal of Life Cycle Assessment, 17(2), 232-241. https://doi.org/10.1007/s11367-011-0350-2.
, 91(91) Borbon-Galvez, Y., Curi, S., Dallari, F., & Ghiringhelli, G. (2021). International industrial symbiosis: Cross-border management of aggregates and construction and demolition waste between Italy and Switzerland. Sustainable Production and Consumption, 25, 312-324. https://doi.org/10.1016/j.spc.2020.09.004.
, 94(94) Hale, S. E., Roque, A. J., Okkenhaug, G., Sørmo, E., Lenoir, T., Carlsson, C., Žlender, B. (2021). The reuse of excavated soils from construction and demolition projects: Limitations and possibilities. Sustainability (Switzerland), 13(11), 1-15. https://doi.org/10.3390/su13116083.
, 109(109) Davis, P., Aziz, F., Newaz, M.T., Sher, W., & Simon, L. (2021). The classification of construction waste material using a deep convolutional neural network. Automation in Construction, 122, 103481. https://doi.org/10.1016/j.autcon.2020.103481.
, 111(111) Lockrey, S., Verghese, K., Crossin, E., & Nguyen, H. (2018). Concrete recycling life cycle flows and performance from construction and demolition waste in Hanoi. Journal of Cleaner Production, 179, 593-604. https://doi.org/10.1016/j.jclepro.2017.12.271.
, 117-122(117) Frankovič, A., Ducman, V., Dolenec, S., Panizza, M., Tamburini, S., Natali, M., Bernardi, A. (2020). Up-scaling and performance assessment of façade panels produced from construction and demolition waste using alkali activation technology. Construction and Building Materials, 262, 120475. https://doi.org/10.1016/j.conbuildmat.2020.120475.
(118) Ulsen, C., Antoniassi, J.L., Martins, I.M., & Kahn, H. (2021). High quality recycled sand from mixed CDW - Is that possible? Journal of Materials Research and Technology, 12, 29-42. https://doi.org/10.1016/j.jmrt.2021.02.057.
(119) Bao, Z., Lu, W., Chi, B., Yuan, H., & Hao, J. (2019). Procurement innovation for a circular economy of construction and demolition waste: Lessons learnt from Suzhou, China. Waste Management, 99, 12-21. https://doi.org/10.1016/j.wasman.2019.08.031.
(120) Yu, D., Duan, H., Song, Q., Li, X., Zhang, H., Zhang, H., Wang, J. (2018). Characterizing the environmental impact of metals in construction and demolition waste. Environmental Science and Pollution Research, 25(14), 13823-13832. https://doi.org/10.1007/s11356-018-1632-z.
(121) Drochytka, R., Dufek, Z., Michalčíková, M., & Hodul, J. (2020). Study of possibilities of using special types of building and demolition waste in civil engineering. Periodica Polytechnica Civil Engineering, 64(1), 304-314. https://doi.org/10.3311/PPci.15128.
(122) Esparza, L. A., Ossa, A., & Botero, E. (2020). Evaluation of the complex dynamic modulus of asphaltic concretes manufactured with construction and demolition waste (CDW) aggregates. Environmental Science and Pollution Research, 27(11), 11575-11586. https://doi.org/10.1007/s11356-020-07727-2.
)
Análisis de estrategias para la reutilización de RCD para la fabricación de elementos prefabricados (34(34) Eberhardt, L.C.M., Birkved, M., & Birgisdottir, H. (2020). Building design and construction strategies for a circular economy. Architectural Engineering and Design Management, 18(2), 93-113. https://doi.org/10.1080/17452007.2020.1781588.
, 49(49) Lu, W., & Yuan, H. (2010). Exploring critical success factors for waste management in construction projects of China. Resources, Conservation and Recycling, 55(2), 201-208. https://doi.org/10.1016/j.resconrec.2010.09.010.
)
Análisis del ciclo de vida de los materiales en la toma de decisiones (2(2) Jain, M.S. (2021). A mini review on generation, handling, and initiatives to tackle construction and demolition waste in India. Environmental Technology and Innovation, 22. https://doi.org/10.1016/j.eti.2021.101490.
, 48(48) Gerding, D.P., Wamelink, H., & Leclercq, E.M. (2021). Implementing circularity in the construction process: a case study examining the reorganization of multi-actor environment and the decision-making process. Construction Management and Economics, 39(7), 617-635. https://doi.org/10.1080/01446193.2021.1934885.
, 56(56) Lovrenčić Butković, L., Mihić, M., & Sigmund, Z. (2021). Assessment methods for evaluating circular economy projects in construction: a review of available tools. International Journal of Construction Management. https://doi.org/10.1080/15623599.2021.1942770.
)
Normativa/política Análisis de políticas públicas para la regulación y la promoción del reciclaje de los RCD (5(5) Aslam, M. S., Huang, B., & Cui, L. (2020). Review of construction and demolition waste management in China and USA. Journal of Environmental Management, 264 (March). https://doi.org/10.1016/j.jenvman.2020.110445.
, 8(8) Chinda, T. (2016). Investigation of factors affecting a construction waste recycling decision. Civil Engineering and Environmental Systems, 33(3), 214-226. https://doi.org/10.1080/10286608.2016.1161030.
, 16(16) Antwi-Afari, P., Ng, S.T., & Hossain, M.U. (2021). A review of the circularity gap in the construction industry through scientometric analysis. Journal of Cleaner Production, 298, 126870. https://doi.org/10.1016/j.jclepro.2021.126870.
, 17(17) Wijewickrama, M.K.C.S., Rameezdeen, R., & Chileshe, N. (2021). Information brokerage for circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production, 313, 127938. https://doi.org/10.1016/j.jclepro.2021.127938.
, 22(22) Gangolells, M., Casals, M., Forcada, N., & Macarulla, M. (2014). Analysis of the implementation of effective waste management practices in construction projects and sites. Resources, Conservation and Recycling, 93, 99-111. https://doi.org/10.1016/j.resconrec.2014.10.006.
, 25(25) Haas, M., Galler, R., Scibile, L., & Benedikt, M. (2020). Waste or valuable resource - a critical European review on re-using and managing tunnel excavation material. Resources, Conservation and Recycling, 162, 105048. https://doi.org/10.1016/j.resconrec.2020.105048.
, 37(37) Purnell, P. (2017). On a voyage of recovery: a review of the UK’s resource recovery from waste infrastructure. Sustainable and Resilient Infrastructure, 4(1), 1-20. https://doi.org/10.1080/23789689.2017.1405654.
, 40(40) Park, J., & Tucker, R. (2016). Overcoming barriers to the reuse of construction waste material in Australia: a review of the literature. International Journal of Construction Management, 17(3), 228-237. https://doi.org/10.1080/15623599.2016.1192248.
, 45(45) Priti, & Mandal, K. (2019). Review on evolution of municipal solid waste management in India: practices, challenges and policy implications. Journal of Material Cycles and Waste Management, 21(6), 1263-1279. https://doi.org/10.1007/s10163-019-00880-y.
, 69(69) Cristiano, S., Ghisellini, P., D’Ambrosio, G., Xue, J., Nesticò, A., Gonella, F., & Ulgiati, S. (2021). Construction and demolition waste in the Metropolitan City of Naples, Italy: State of the art, circular design, and sustainable planning opportunities. Journal of Cleaner Production, 293, 125856. https://doi.org/10.1016/j.jclepro.2021.125856.
, 96(96) Santos, M.T., Lamego, P., & Frade, P. (2017). Management options for construction and demolition wastes from residential recuperation. Waste and Biomass Valorization, 8(5), 1679-1687. https://doi.org/10.1007/s12649-016-9675-1.
, 106(106) Bao, Z., & Lu, W. (2021). A decision-support framework for planning construction waste recycling: A case study of Shenzhen, China. Journal of Cleaner Production, 309, 127449. https://doi.org/10.1016/j.jclepro.2021.127449.
, 108(108) Liu, J., Liu, Y., & Wang, X. (2020). An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou. Environmental Science and Pollution Research, 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.
, 123(123) Van Tuan, N., Kien, T.T., Huyen, D.T.T., Nga, T.T.V., Giang, N.H., Dung, N.T., Kawamoto, K. (2018). Current status of construction and demolition waste management in Vietnam: Challenges and opportunities. International Journal of GEOMATE, 15(52), 23-29. https://doi.org/10.21660/2018.52.7194.
)
Involucramiento de las variables sancionatorias e incentivos para la toma de decisiones (3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
, 47(47) Calvo, N., Varela-Candamio, L., & Novo-Corti, I. (2014). A dynamic model for construction and demolition (C&D) waste management in Spain: Driving policies based on economic incentives and tax penalties. Sustainability (Switzerland), 6(1), 416-435. https://doi.org/10.3390/su6010416.
, 57(57) L. Du, Y. Feng, W. Lu, L. Kong, and Z. Yang (2020). Evolutionary game analysis of stakeholders’ decision-making behaviours in construction and demolition waste management. Environmental Impact Assessment Review, 84, 106408. https://doi.org/10.1016/j.eiar.2020.106408.
, 58(58) Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36-44. https://doi.org/10.1016/j.resconrec.2017.09.029.
)
Involucramiento de las variables de políticas ambientales, regulación de prácticas y priorización de la prevención para la mitigación de impactos ambientales. (1(1) Anastasiades, K., Goffin, J., Rinke, M., Buyle, M., Audenaert, A., & Blom, J. (2021). Standardisation: An essential enabler for the circular reuse of construction components? A trajectory for a cleaner European construction industry. Journal of Cleaner Production, 298. https://doi.org/10.1016/j.jclepro.2021.126864.
, 59(59) Gálvez-Martos, J.L., Styles, D., Schoenberger, H., & Zeschmar-Lahl, B. (2018b). Construction and demolition waste best management practice in Europe. Resources, Conservation and Recycling, 136, 166-178. https://doi.org/10.1016/j.resconrec.2018.04.016.
, 60(60) Yuan, H. (2017). Barriers and countermeasures for managing construction and demolition waste: A case of Shenzhen in China. Journal of Cleaner Production, 157, 84-93. https://doi.org/10.1016/j.jclepro.2017.04.137.
)

Dentro de las estrategias según las categorías podemos destacar que, en la recolección de prácticas de circularidad, los artículos contienen información relacionada con la implementación de entrevistas, encuestas y recolección de las prácticas comunes en los diferentes países o zonas geográficas, permitiendo identificar algunas de las barreras actuales y fomentando la generación de soluciones que permitan el fomento de prácticas más responsables (43(43) Mahpour, A. (2018). Prioritizing barriers to adopt circular economy in construction and demolition waste management. Resources, Conservation and Recycling, 134, 216-227. https://doi.org/10.1016/j.resconrec.2018.01.026.
, 44(44) Ghaffar, S. H., Burman, M., & Braimah, N. (2020). Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. Journal of Cleaner Production, 244, 118710. https://doi.org/10.1016/j.jclepro.2019.118710.
).

En el análisis sectorial, se analizaron los aspectos relacionados con la implementación de objetivos direccionados a la mitigación de los impactos generados por los principales actores mediante la generación de diseños sostenibles y responsables, adecuada separación de los materiales en el sitio y el fomento de la conciencia y cultura ciudadana (42(42) Bigolin, M., Danilevicz, Â.D.M.F., Weiss, M.A., & Silva Filho, L.C.P. (2021). Sustainable new product development: a decision-making tool for the construction industry. International Journal of Sustainable Engineering, 14(4), 618-629. https://doi.org/10.1080/19397038.2021.1920642.
, 45-48(45) Priti, & Mandal, K. (2019). Review on evolution of municipal solid waste management in India: practices, challenges and policy implications. Journal of Material Cycles and Waste Management, 21(6), 1263-1279. https://doi.org/10.1007/s10163-019-00880-y.
(46) Górecki, J., Núñez-Cacho, P., Corpas-Iglesias, F.A., & Molina, V. (2019). How to convince players in construction market? Strategies for effective implementation of circular economy in construction sector. Cogent Engineering, 6(1), 1690760. https://doi.org/10.1080/23311916.2019.1690760.
(47) Calvo, N., Varela-Candamio, L., & Novo-Corti, I. (2014). A dynamic model for construction and demolition (C&D) waste management in Spain: Driving policies based on economic incentives and tax penalties. Sustainability (Switzerland), 6(1), 416-435. https://doi.org/10.3390/su6010416.
(48) Gerding, D.P., Wamelink, H., & Leclercq, E.M. (2021). Implementing circularity in the construction process: a case study examining the reorganization of multi-actor environment and the decision-making process. Construction Management and Economics, 39(7), 617-635. https://doi.org/10.1080/01446193.2021.1934885.
). Las tecnologías implementadas para lograr el crecimiento en la implementación de estrategias circulares, incluye el uso de herramientas tecnológicas y metodológicas (BIM-GIS), la simulación asistida para la evaluación de los comportamientos y tratamientos de los RCD en obra y fuera de ella para la gestión sostenible de los recursos (10(10) Charef, R., & Emmitt, S. (2021). Uses of building information modelling for overcoming barriers to a circular economy. Journal of Cleaner Production, 285. https://doi.org/10.1016/j.jclepro.2020.124854.
, 11(11) Ganiyu, S.A., Oyedele, L.O., Akinade, O., Owolabi, H., Akanbi, L., & Gbadamosi, A. (2020). BIM competencies for delivering waste-efficient building projects in a circular economy. Developments in the Built Environment, 4, 100036. https://doi.org/10.1016/j.dibe.2020.100036.
, 49(49) Lu, W., & Yuan, H. (2010). Exploring critical success factors for waste management in construction projects of China. Resources, Conservation and Recycling, 55(2), 201-208. https://doi.org/10.1016/j.resconrec.2010.09.010.
, 50(50) Zhao, X. (2021). Stakeholder-associated factors influencing construction and demolition waste management: a systematic review. Buildings, 11(149), 1-22. https://doi.org/10.3390/buildings11040149.
).

Respecto a la categoría de materiales, es importante el hecho de que en varios de los artículos se establecen procesos mediante los cuales se realiza un tratamiento a los RCD para ser incorporados en nuevos insumos o productos de la industria como morteros o concretos, con características de alta calidad que permiten su uso responsable, fomentando la utilización de productos prefabricados que reducen los impactos generados en obra (42(42) Bigolin, M., Danilevicz, Â.D.M.F., Weiss, M.A., & Silva Filho, L.C.P. (2021). Sustainable new product development: a decision-making tool for the construction industry. International Journal of Sustainable Engineering, 14(4), 618-629. https://doi.org/10.1080/19397038.2021.1920642.
, 51-55(51) Amine Laadila, M., LeBihan, Y., Caron, R.F., & Vaneeckhaute, C. (2021). Construction, renovation and demolition (CRD) wastes contaminated by gypsum residues: Characterization, treatment and valorization. Waste Management, 120, 125-135. https://doi.org/10.1016/j.wasman.2020.11.031.
(52) Bonoli, A., Zanni, S., & Serrano-Bernardo, F. (2021). Sustainability in building and construction within the framework of circular cities and european new green deal. The contribution of concrete recycling. Sustainability (Switzerland), 13(4), 1-16. https://doi.org/10.3390/su13042139.
(53) Cai, G., & Waldmann, D. (2019). A material and component bank to facilitate material recycling and component reuse for a sustainable construction: concept and preliminary study. Clean Technologies and Environmental Policy, 21(10), 2015-2032. https://doi.org/10.1007/s10098-019-01758-1.
(54) Caneda-martínez, L., Monasterio, M., Moreno-juez, J., Martínez-ramírez, S., García, R., & Frías, M. (2021). Behaviour and properties of eco-cement pastes elaborated with recycled concrete powder from construction and demolition wastes. Materials, 14(5), 1-19. https://doi.org/10.3390/ma14051299.
(55) Collivignarelli, M.C., Cillari, G., Ricciardi, P., Miino, M.C., Torretta, V., Rada, E.C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1-34. https://doi.org/10.3390/SU12197903.
). Además, es importante contar con equipos que permitan el procesamiento y la separación de los residuos en los sitios adecuados, permitiendo la competitividad de los mercados y la reducción de gastos energéticos y económicos (2(2) Jain, M.S. (2021). A mini review on generation, handling, and initiatives to tackle construction and demolition waste in India. Environmental Technology and Innovation, 22. https://doi.org/10.1016/j.eti.2021.101490.
, 48(48) Gerding, D.P., Wamelink, H., & Leclercq, E.M. (2021). Implementing circularity in the construction process: a case study examining the reorganization of multi-actor environment and the decision-making process. Construction Management and Economics, 39(7), 617-635. https://doi.org/10.1080/01446193.2021.1934885.
, 56(56) Lovrenčić Butković, L., Mihić, M., & Sigmund, Z. (2021). Assessment methods for evaluating circular economy projects in construction: a review of available tools. International Journal of Construction Management. https://doi.org/10.1080/15623599.2021.1942770.
). Es de mencionar que los RCD más comunes utilizados en los artículos seleccionados corresponden a concretos, morteros, ladrillos (13(13) Wu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Status quo and future directions of construction and demolition waste research: A critical review. Journal of Cleaner Production, 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163.
, 42(42) Bigolin, M., Danilevicz, Â.D.M.F., Weiss, M.A., & Silva Filho, L.C.P. (2021). Sustainable new product development: a decision-making tool for the construction industry. International Journal of Sustainable Engineering, 14(4), 618-629. https://doi.org/10.1080/19397038.2021.1920642.
, 52(52) Bonoli, A., Zanni, S., & Serrano-Bernardo, F. (2021). Sustainability in building and construction within the framework of circular cities and european new green deal. The contribution of concrete recycling. Sustainability (Switzerland), 13(4), 1-16. https://doi.org/10.3390/su13042139.
, 55(55) Collivignarelli, M.C., Cillari, G., Ricciardi, P., Miino, M.C., Torretta, V., Rada, E.C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1-34. https://doi.org/10.3390/SU12197903.
, 87(87) Verhagen, T.J., Sauer, M.L., Voet, E. van der, & Sprecher, B. (2021). Matching demolition and construction material flows, an urban mining case study. Sustainability (Switzerland), 13(2), 1-14. https://doi.org/10.3390/su13020653.
, 92(92) Tazi, N., Idir, R., & Ben Fraj, A. (2020). Towards achieving circularity in residential building materials: Potential stock, locks and opportunities. Journal of Cleaner Production, 281, 124489. https://doi.org/10.1016/j.jclepro.2020.124489.
, 100(100) Jesus, S., Pederneiras, C.M., Farinha, C.B., de Brito, J., & Veiga, R. (2021). Reduction of the cement content by incorporation of fine recycled aggregates from construction and demolition waste in rendering mortars. Infrastructures, 6(1), 1-16. https://doi.org/10.3390/infrastructures6010011.
, 111(111) Lockrey, S., Verghese, K., Crossin, E., & Nguyen, H. (2018). Concrete recycling life cycle flows and performance from construction and demolition waste in Hanoi. Journal of Cleaner Production, 179, 593-604. https://doi.org/10.1016/j.jclepro.2017.12.271.
, 117(117) Frankovič, A., Ducman, V., Dolenec, S., Panizza, M., Tamburini, S., Natali, M., Bernardi, A. (2020). Up-scaling and performance assessment of façade panels produced from construction and demolition waste using alkali activation technology. Construction and Building Materials, 262, 120475. https://doi.org/10.1016/j.conbuildmat.2020.120475.
, 118(118) Ulsen, C., Antoniassi, J.L., Martins, I.M., & Kahn, H. (2021). High quality recycled sand from mixed CDW - Is that possible? Journal of Materials Research and Technology, 12, 29-42. https://doi.org/10.1016/j.jmrt.2021.02.057.
), seguidos de los residuos de drywall, madera y vidrios (51(51) Amine Laadila, M., LeBihan, Y., Caron, R.F., & Vaneeckhaute, C. (2021). Construction, renovation and demolition (CRD) wastes contaminated by gypsum residues: Characterization, treatment and valorization. Waste Management, 120, 125-135. https://doi.org/10.1016/j.wasman.2020.11.031.
, 87(87) Verhagen, T.J., Sauer, M.L., Voet, E. van der, & Sprecher, B. (2021). Matching demolition and construction material flows, an urban mining case study. Sustainability (Switzerland), 13(2), 1-14. https://doi.org/10.3390/su13020653.
, 92(92) Tazi, N., Idir, R., & Ben Fraj, A. (2020). Towards achieving circularity in residential building materials: Potential stock, locks and opportunities. Journal of Cleaner Production, 281, 124489. https://doi.org/10.1016/j.jclepro.2020.124489.
, 117(117) Frankovič, A., Ducman, V., Dolenec, S., Panizza, M., Tamburini, S., Natali, M., Bernardi, A. (2020). Up-scaling and performance assessment of façade panels produced from construction and demolition waste using alkali activation technology. Construction and Building Materials, 262, 120475. https://doi.org/10.1016/j.conbuildmat.2020.120475.
), Tabla 1.

Según las normativas y políticas públicas, se resalta que el apoyo de los gobiernos es de vital importancia para garantizar una adecuada gestión de los RCD, ya que por medio de incentivos y regulaciones es posible promover una conciencia responsable en los actores principales, permitiendo un avance significativo en las prácticas circulares(3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
, 47(47) Calvo, N., Varela-Candamio, L., & Novo-Corti, I. (2014). A dynamic model for construction and demolition (C&D) waste management in Spain: Driving policies based on economic incentives and tax penalties. Sustainability (Switzerland), 6(1), 416-435. https://doi.org/10.3390/su6010416.
, 57(57) L. Du, Y. Feng, W. Lu, L. Kong, and Z. Yang (2020). Evolutionary game analysis of stakeholders’ decision-making behaviours in construction and demolition waste management. Environmental Impact Assessment Review, 84, 106408. https://doi.org/10.1016/j.eiar.2020.106408.
, 58(58) Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36-44. https://doi.org/10.1016/j.resconrec.2017.09.029.
). De esta manera, al generar el involucramiento de diferentes variables e políticas ambientales, se genera una conciencia de prevención que ayuda a regular la cantidad de generación de residuos y permite controlar de una mejor manera los impactos y consecuencias a causa de una inadecuada gestión (1(1) Anastasiades, K., Goffin, J., Rinke, M., Buyle, M., Audenaert, A., & Blom, J. (2021). Standardisation: An essential enabler for the circular reuse of construction components? A trajectory for a cleaner European construction industry. Journal of Cleaner Production, 298. https://doi.org/10.1016/j.jclepro.2021.126864.
, 59(59) Gálvez-Martos, J.L., Styles, D., Schoenberger, H., & Zeschmar-Lahl, B. (2018b). Construction and demolition waste best management practice in Europe. Resources, Conservation and Recycling, 136, 166-178. https://doi.org/10.1016/j.resconrec.2018.04.016.
, 60(60) Yuan, H. (2017). Barriers and countermeasures for managing construction and demolition waste: A case of Shenzhen in China. Journal of Cleaner Production, 157, 84-93. https://doi.org/10.1016/j.jclepro.2017.04.137.
).

Para el análisis del ciclo de vida, detallado en la Tabla 2, se tuvo en cuenta etapas como diseño-planeación, construcción, uso, restauración-rehabilitación y deconstrucción-demolición; que según la revisión realizada a los artículos cumplían con los criterios de evaluación y permitió realizar un análisis detallado de cada etapa. Es principalmente en las etapas de construcción y demolición donde se genera la mayor cantidad de residuos y por ende es necesario establecer planes de gestión que permitan el máximo aprovechamiento de estos, para de esta manera ampliar su cadena de valor en el mercado y mejorar los índices de desperdicio a nivel nacional e internacional (69(69) Cristiano, S., Ghisellini, P., D’Ambrosio, G., Xue, J., Nesticò, A., Gonella, F., & Ulgiati, S. (2021). Construction and demolition waste in the Metropolitan City of Naples, Italy: State of the art, circular design, and sustainable planning opportunities. Journal of Cleaner Production, 293, 125856. https://doi.org/10.1016/j.jclepro.2021.125856.
).

Tabla 2.  Estrategias implementadas por los autores respecto a la fase del ciclo de vida.
Fuente Fases Total
Diseño/ planeación Construcción Uso Restauración/ rehabilitación Deconstrucción/ Demolición
(3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
, 5(5) Aslam, M. S., Huang, B., & Cui, L. (2020). Review of construction and demolition waste management in China and USA. Journal of Environmental Management, 264 (March). https://doi.org/10.1016/j.jenvman.2020.110445.
, 14(14) Gálvez-Martos, J.L., Styles, D., Schoenberger, H., & Zeschmar-Lahl, B. (2018a). Construction and demolition waste best management practice in Europe. Resources, Conservation and Recycling, 136, 166-178. https://doi.org/10.1016/j.resconrec.2018.04.016.
, 15(15) Bao, Z., Lee, W.M.W., & Lu, W. (2020). Implementing on-site construction waste recycling in Hong Kong: Barriers and facilitators. Science of the Total Environment, 747, 141091. https://doi.org/10.1016/j.scitotenv.2020.141091.
, 22(22) Gangolells, M., Casals, M., Forcada, N., & Macarulla, M. (2014). Analysis of the implementation of effective waste management practices in construction projects and sites. Resources, Conservation and Recycling, 93, 99-111. https://doi.org/10.1016/j.resconrec.2014.10.006.
, 32(32) Gethsemane Akhimi, N., Latfi, E., & Shan Shan, H. (2020). Application of circular economy principles in buildings: A systematic review. Journal of Building Engineering, 44, 24-27.
, 44(44) Ghaffar, S. H., Burman, M., & Braimah, N. (2020). Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. Journal of Cleaner Production, 244, 118710. https://doi.org/10.1016/j.jclepro.2019.118710.
, 53(53) Cai, G., & Waldmann, D. (2019). A material and component bank to facilitate material recycling and component reuse for a sustainable construction: concept and preliminary study. Clean Technologies and Environmental Policy, 21(10), 2015-2032. https://doi.org/10.1007/s10098-019-01758-1.
, 56(56) Lovrenčić Butković, L., Mihić, M., & Sigmund, Z. (2021). Assessment methods for evaluating circular economy projects in construction: a review of available tools. International Journal of Construction Management. https://doi.org/10.1080/15623599.2021.1942770.
, 68(68) Kabirifar, K., Mojtahedi, M., Wang, C., & Tam, V.W.Y. (2020). Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. Journal of Cleaner Production, 263, 121265. https://doi.org/10.1016/j.jclepro.2020.121265.
, 73(73) Caldera, S., Ryley, T., & Zatyko, N. (2020). Enablers and barriers for creating a marketplace for construction and demolition waste: A systematic literature review. Sustainability (Switzerland), 12(23), 1-19. https://doi.org/10.3390/su12239931.
, 82(82) Iodice, S., Garbarino, E., Cerreta, M., & Tonini, D. (2021). Sustainability assessment of Construction and Demolition Waste management applied to an Italian case. Waste Management, 128, 83-98. https://doi.org/10.1016/j.wasman.2021.04.031.
, 88(88) Mhatre, P., Gedam, V., Unnikrishnan, S., & Verma, S. (2020). Circular economy in built environme t - Literature review and theory development. Journal of Building Engineering, 35, 101995. https://doi.org/10.1016/j.jobe.2020.101995.
, 92(92) Tazi, N., Idir, R., & Ben Fraj, A. (2020). Towards achieving circularity in residential building materials: Potential stock, locks and opportunities. Journal of Cleaner Production, 281, 124489. https://doi.org/10.1016/j.jclepro.2020.124489.
, 98(98) Su, Y., Si, H., Chen, J., & Wu, G. (2020). Promoting the sustainable development of the recycling market of construction and demolition waste: A stakeholder game perspective. Journal of Cleaner Production, 277, 122281. https://doi.org/10.1016/j.jclepro.2020.122281.
, 102(102) Sparrevik, M., de Boer, L., Michelsen, O., Skaar, C., Knudson, H., & Fet, A.M. (2021). Circular economy in the construction sector: advancing environmental performance through systemic and holistic thinking. Environment Systems and Decisions, 41(3), 392-400. https://doi.org/10.1007/s10669-021-09803-5.
, 111(111) Lockrey, S., Verghese, K., Crossin, E., & Nguyen, H. (2018). Concrete recycling life cycle flows and performance from construction and demolition waste in Hanoi. Journal of Cleaner Production, 179, 593-604. https://doi.org/10.1016/j.jclepro.2017.12.271.
, 125(125) Liu, J., Teng, Y., Wang, D., & Gong, E. (2020). Environmental toxicology and biogeochemistry of ecosystems system dynamic analysis of construction waste recycling industry chain in China, 27, 37260-37277. https://doi.org/10.1007/s11356-019-06739-x.
)
X X X X X 5
(4(4) Spišáková, M., Mésároš, P., & Mandičák, T. (2021). Construction waste audit in the framework of sustainable waste management in construction projects-case study. Buildings, 11(2), 1-16. https://doi.org/10.3390/buildings11020061.
, 20(20) Rajagopalan, N., Brancart, S., De Regel, S., Paduart, A., De Temmerman, N., & Debacker, W. (2021). Multi-criteria decision analysis using life cycle assessment and life cycle costing in circular building design: A case study for wall partitioning systems in the circular retrofit lab. Sustainability (Switzerland), 13(9), 5124. https://doi.org/10.3390/su13095124.
, 33(33) Laovisutthichai, V., Lu, W., & Bao, Z. (2020). Design for construction waste minimization: guidelines and practice. Architectural Engineering and Design Management. 18(3), 279-298. https://doi.org/10.1080/17452007.2020.1862043.
, 40(40) Park, J., & Tucker, R. (2016). Overcoming barriers to the reuse of construction waste material in Australia: a review of the literature. International Journal of Construction Management, 17(3), 228-237. https://doi.org/10.1080/15623599.2016.1192248.
, 49(49) Lu, W., & Yuan, H. (2010). Exploring critical success factors for waste management in construction projects of China. Resources, Conservation and Recycling, 55(2), 201-208. https://doi.org/10.1016/j.resconrec.2010.09.010.
, 50(50) Zhao, X. (2021). Stakeholder-associated factors influencing construction and demolition waste management: a systematic review. Buildings, 11(149), 1-22. https://doi.org/10.3390/buildings11040149.
, 80(80) Rodrigues, C., & Freire, F. (2021). Environmental impacts and costs of residential building retrofits - What matters? Sustainable Cities and Society, 67, 102733. https://doi.org/10.1016/j.scs.2021.102733.
, 100(100) Jesus, S., Pederneiras, C.M., Farinha, C.B., de Brito, J., & Veiga, R. (2021). Reduction of the cement content by incorporation of fine recycled aggregates from construction and demolition waste in rendering mortars. Infrastructures, 6(1), 1-16. https://doi.org/10.3390/infrastructures6010011.
, 115(115) Nodehi, M., & Mohamad Taghvaee, V. (2021). Sustainable concrete for circular economy: a review on use of waste glass. Glass Structures and Engineering, 7, 3-22. https://doi.org/10.1007/s40940-021-00155-9.
, 120(120) Yu, D., Duan, H., Song, Q., Li, X., Zhang, H., Zhang, H., Wang, J. (2018). Characterizing the environmental impact of metals in construction and demolition waste. Environmental Science and Pollution Research, 25(14), 13823-13832. https://doi.org/10.1007/s11356-018-1632-z.
, 126(126) Li, A. (2020). All that is solid. Journal of Architectural Education, 74(2), 299-308. https://doi.org/10.1080/10464883.2020.1790940.
)
X X X X 4
(69(69) Cristiano, S., Ghisellini, P., D’Ambrosio, G., Xue, J., Nesticò, A., Gonella, F., & Ulgiati, S. (2021). Construction and demolition waste in the Metropolitan City of Naples, Italy: State of the art, circular design, and sustainable planning opportunities. Journal of Cleaner Production, 293, 125856. https://doi.org/10.1016/j.jclepro.2021.125856.
, 127(127) Paschoalin Filho, J.A., Bezerra, C.M. da S., & Guerner Dias, A.J. (2020). Environmental indicators proposal for construction solid waste management plans assessment. Management of Environmental Quality: An International Journal, 31(6), 1623-1645. https://doi.org/10.1108/MEQ-07-2019-0153.
)
X X X X
(128(128) Janjua, S. Y., Sarker, P. K., & Biswas, W. K. (2021). Sustainability implications of service life on residential buildings - An application of life cycle sustainability assessment framework. Environmental and Sustainability Indicators, 10, 100109. https://doi.org/10.1016/j.indic.2021.100109.
)
X X X X
(2(2) Jain, M.S. (2021). A mini review on generation, handling, and initiatives to tackle construction and demolition waste in India. Environmental Technology and Innovation, 22. https://doi.org/10.1016/j.eti.2021.101490.
, 7(7) López Ruiz, L. A., Roca Ramón, X., & Gassó Domingo, S. (2020). The circular economy in the construction and demolition waste sector - A review and an integrative model approach. Journal of Cleaner Production, 248. https://doi.org/10.1016/j.jclepro.2019.119238.
, 18(18) Barbudo, A., Ayuso, J., Lozano, A., Cabrera, M., & López-Uceda, A. (2020). Recommendations for the management of construction and demolition waste in treatment plants. Environmental Science and Pollution Research, 27(1), 125-132. https://doi.org/10.1007/s11356-019-05578-0.
, 34(34) Eberhardt, L.C.M., Birkved, M., & Birgisdottir, H. (2020). Building design and construction strategies for a circular economy. Architectural Engineering and Design Management, 18(2), 93-113. https://doi.org/10.1080/17452007.2020.1781588.
, 37(37) Purnell, P. (2017). On a voyage of recovery: a review of the UK’s resource recovery from waste infrastructure. Sustainable and Resilient Infrastructure, 4(1), 1-20. https://doi.org/10.1080/23789689.2017.1405654.
, 47(47) Calvo, N., Varela-Candamio, L., & Novo-Corti, I. (2014). A dynamic model for construction and demolition (C&D) waste management in Spain: Driving policies based on economic incentives and tax penalties. Sustainability (Switzerland), 6(1), 416-435. https://doi.org/10.3390/su6010416.
, 52(52) Bonoli, A., Zanni, S., & Serrano-Bernardo, F. (2021). Sustainability in building and construction within the framework of circular cities and european new green deal. The contribution of concrete recycling. Sustainability (Switzerland), 13(4), 1-16. https://doi.org/10.3390/su13042139.
, 55(55) Collivignarelli, M.C., Cillari, G., Ricciardi, P., Miino, M.C., Torretta, V., Rada, E.C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1-34. https://doi.org/10.3390/SU12197903.
, 58(58) Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36-44. https://doi.org/10.1016/j.resconrec.2017.09.029.
, 70(70) Guerra, B. C., & Leite, F. (2021). Circular economy in the construction industry: An overview of United States stakeholders’ awareness, major challenges, and enablers. Resources, Conservation and Recycling, 170, 105617. https://doi.org/10.1016/j.resconrec.2021.105617.
, 75(75) Yu, A.T.W., Wong, I., Wu, Z., & Poon, C.S. (2021). Strategies for effective waste reduction and management of building construction projects in highly urbanized cities- a case study of hong kong. Buildings, 11(5), 1-14. https://doi.org/10.3390/buildings11050214.
, 78(78) Asgari, A., Ghorbanian, T., Yousefi, N., Dadashzadeh, D., Khalili, F., Bagheri, A., Mahvi, A.H. (2017). Quality and quantity of construction and demolition waste in Tehran. Journal of Environmental Health Science and Engineering, 15(1), 1-8. https://doi.org/10.1186/s40201-017-0276-0.
, 86(86) Esguícero, F.J., Deus, R.M., Battistelle, R., Martins, B.L., & Bezerra, B.S. (2021). Construction and demolition waste management process modeling: a framework for the Brazilian context. Journal of Material Cycles and Waste Management, 23(5), 2037-2050. https://doi.org/10.1007/s10163-021-01247-y.
, 87(87) Verhagen, T.J., Sauer, M.L., Voet, E. van der, & Sprecher, B. (2021). Matching demolition and construction material flows, an urban mining case study. Sustainability (Switzerland), 13(2), 1-14. https://doi.org/10.3390/su13020653.
, 89(89) Bertino, G., Kisser, J., Zeilinger, J., Langergraber, G., Fischer, T., & Österreicher, D. (2021). Fundamentals of building deconstruction as a circular economy strategy for the reuse of construction materials. Applied Sciences (Switzerland), 11(3), 1-31. https://doi.org/10.3390/app11030939.
, 93(93) Vitale, F., & Nicolella, M. (2021). Mortars with recycled aggregates from building-related processes: A ‘four-step’ methodological proposal for a review. Sustainability (Switzerland), 13(5), 1-32. https://doi.org/10.3390/su13052756.
, 96(96) Santos, M.T., Lamego, P., & Frade, P. (2017). Management options for construction and demolition wastes from residential recuperation. Waste and Biomass Valorization, 8(5), 1679-1687. https://doi.org/10.1007/s12649-016-9675-1.
, 98(98) Su, Y., Si, H., Chen, J., & Wu, G. (2020). Promoting the sustainable development of the recycling market of construction and demolition waste: A stakeholder game perspective. Journal of Cleaner Production, 277, 122281. https://doi.org/10.1016/j.jclepro.2020.122281.
, 105(105) Lu, W., Bao, Z., Lee, W.M.W., Chi, B., & Wang, J. (2021). An analytical framework of “zero waste construction site”: Two case studies of Shenzhen, China. Waste Management, 121, 343-353. https://doi.org/10.1016/j.wasman.2020.12.029.
, 109(109) Davis, P., Aziz, F., Newaz, M.T., Sher, W., & Simon, L. (2021). The classification of construction waste material using a deep convolutional neural network. Automation in Construction, 122, 103481. https://doi.org/10.1016/j.autcon.2020.103481.
, 118(118) Ulsen, C., Antoniassi, J.L., Martins, I.M., & Kahn, H. (2021). High quality recycled sand from mixed CDW - Is that possible? Journal of Materials Research and Technology, 12, 29-42. https://doi.org/10.1016/j.jmrt.2021.02.057.
, 124(124) Luciano, A., Cutaia, L., Cioffi, F., & Sinibaldi, C. (2020). Demolition and construction recycling unified management: the DECORUM platform for improvement of resource efficiency in the construction sector. Environmental Science and Pollution Research, 28(19), 24558-24569. https://doi.org/10.1007/s11356-020-09513-6.
, 129(129) Saez, P. V., Del Río Merino, M., San-Antonio González, A., & Porras-Amores, C. (2013). Best practice measures assessment for construction and demolition waste management in building constructions. Resources, Conservation and Recycling, 75, 52-62. https://doi.org/10.1016/j.resconrec.2013.03.009.
,)
X X X 3
(8(8) Chinda, T. (2016). Investigation of factors affecting a construction waste recycling decision. Civil Engineering and Environmental Systems, 33(3), 214-226. https://doi.org/10.1080/10286608.2016.1161030.
, 17(17) Wijewickrama, M.K.C.S., Rameezdeen, R., & Chileshe, N. (2021). Information brokerage for circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production, 313, 127938. https://doi.org/10.1016/j.jclepro.2021.127938.
, 27(27) Rondinel-Oviedo, D.R. (2021). Construction and demolition waste management in developing countries: a diagnosis from 265 construction sites in the Lima Metropolitan Area. International Journal of Construction Management. https://doi.org/10.1080/15623599.2021.1874677.
, 36(36) Ghisellini, P., Ji, X., Liu, G., & Ulgiati, S. (2018). Evaluating the transition towards cleaner production in the construction and demolition sector of China: A review. Journal of Cleaner Production, 195, 418-434. https://doi.org/10.1016/j.jclepro.2018.05.084.
, 38(38) Fořt, J., & Černý, R. (2020). Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Management, 118, 510-520. https://doi.org/10.1016/j.wasman.2020.09.004.
, 77(77) Passos, J., Alves, O., & Brito, P. (2020). Management of municipal and construction and demolition wastes in Portugal: future perspectives through gasification for energetic valorisation. International Journal of Environmental Science and Technology, 17(5), 2907-2926. https://doi.org/10.1007/s13762-020-02656-6.
, 85(85) Bao, Z., Lu, W., & Hao, J. (2021). Tackling the “last mile” problem in renovation waste management: A case study in China. Science of the Total Environment, 790, 148261. https://doi.org/10.1016/j.scitotenv.2021.148261.
, 90(90) Mercante, I.T., Bovea, M.D., Ibáñez-Forés, V., & Arena, A.P. (2012). Life cycle assessment of construction and demolition waste management systems: A Spanish case study. International Journal of Life Cycle Assessment, 17(2), 232-241. https://doi.org/10.1007/s11367-011-0350-2.
, 98(98) Su, Y., Si, H., Chen, J., & Wu, G. (2020). Promoting the sustainable development of the recycling market of construction and demolition waste: A stakeholder game perspective. Journal of Cleaner Production, 277, 122281. https://doi.org/10.1016/j.jclepro.2020.122281.
, 108(108) Liu, J., Liu, Y., & Wang, X. (2020). An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou. Environmental Science and Pollution Research, 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.
, 113(113) Ferdous, W., Manalo, A., Siddique, R., Mendis, P., Zhuge, Y., Wong, H.S., Schubel, P. (2021). Recycling of landfill wastes (tyres, plastics and glass) in construction - A review on global waste generation, performance, application and future opportunities. Resources, Conservation and Recycling, 173, 105745. https://doi.org/10.1016/j.resconrec.2021.105745.
, 130-132(130) Hjaltadóttir, R. E., & Hild, P. (2021). Circular Economy in the building industry European policy and local practices. European Planning Studies, 29(12), 2226-2251. https://doi.org/10.1080/09654313.2021.1904838.
(131) Jain, S., Singhal, S. and Jain N.K. (2019). Construction and demolition waste generation in cities in India: an integrated approach.International Journal of Sustainable Engineering, 12(5), 333-340. https://doi.org/10.1080/19397038.2019.1612967.
(132) Shooshtarian, S., Caldera, S., Maqsood, T., & Ryley, T. (2020). Using recycled construction and demolition waste products: A review of stakeholders’ perceptions, decisions, and motivations. Recycling, 5(4), 1-16. https://doi.org/10.3390/recycling5040031.
)
X X X
(10(10) Charef, R., & Emmitt, S. (2021). Uses of building information modelling for overcoming barriers to a circular economy. Journal of Cleaner Production, 285. https://doi.org/10.1016/j.jclepro.2020.124854.
, 11(11) Ganiyu, S.A., Oyedele, L.O., Akinade, O., Owolabi, H., Akanbi, L., & Gbadamosi, A. (2020). BIM competencies for delivering waste-efficient building projects in a circular economy. Developments in the Built Environment, 4, 100036. https://doi.org/10.1016/j.dibe.2020.100036.
, 16(16) Antwi-Afari, P., Ng, S.T., & Hossain, M.U. (2021). A review of the circularity gap in the construction industry through scientometric analysis. Journal of Cleaner Production, 298, 126870. https://doi.org/10.1016/j.jclepro.2021.126870.
, 42(42) Bigolin, M., Danilevicz, Â.D.M.F., Weiss, M.A., & Silva Filho, L.C.P. (2021). Sustainable new product development: a decision-making tool for the construction industry. International Journal of Sustainable Engineering, 14(4), 618-629. https://doi.org/10.1080/19397038.2021.1920642.
, 48(48) Gerding, D.P., Wamelink, H., & Leclercq, E.M. (2021). Implementing circularity in the construction process: a case study examining the reorganization of multi-actor environment and the decision-making process. Construction Management and Economics, 39(7), 617-635. https://doi.org/10.1080/01446193.2021.1934885.
, 51(51) Amine Laadila, M., LeBihan, Y., Caron, R.F., & Vaneeckhaute, C. (2021). Construction, renovation and demolition (CRD) wastes contaminated by gypsum residues: Characterization, treatment and valorization. Waste Management, 120, 125-135. https://doi.org/10.1016/j.wasman.2020.11.031.
, 68(68) Kabirifar, K., Mojtahedi, M., Wang, C., & Tam, V.W.Y. (2020). Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. Journal of Cleaner Production, 263, 121265. https://doi.org/10.1016/j.jclepro.2020.121265.
, 79(79) Joensuu, T., Edelman, H., & Saari, A. (2020). Circular economy practices in the built environment. Journal of Cleaner Production, 276, 124215. https://doi.org/10.1016/j.jclepro.2020.124215.
, 91(91) Borbon-Galvez, Y., Curi, S., Dallari, F., & Ghiringhelli, G. (2021). International industrial symbiosis: Cross-border management of aggregates and construction and demolition waste between Italy and Switzerland. Sustainable Production and Consumption, 25, 312-324. https://doi.org/10.1016/j.spc.2020.09.004.
)
X X X
(13(13) Wu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Status quo and future directions of construction and demolition waste research: A critical review. Journal of Cleaner Production, 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163.
, 15(15) Bao, Z., Lee, W.M.W., & Lu, W. (2020). Implementing on-site construction waste recycling in Hong Kong: Barriers and facilitators. Science of the Total Environment, 747, 141091. https://doi.org/10.1016/j.scitotenv.2020.141091.
, 39(39) Chen, Y., & Zhou, Y. (2020). The contents and release behavior of heavy metals in construction and demolition waste used in freeway construction. Environmental Science and Pollution Research, 27(1), 1078-1086. https://doi.org/10.1007/s11356-019-07067-w.
, 72(72) Ranjbari, M., Saidani, M., Shams Esfandabadi, Z., Peng, W., Lam, S. S., Aghbashlo, M., Tabatabaei, M. (2021). Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. Journal of Cleaner Production, 314, 128009. https://doi.org/10.1016/j.jclepro.2021.128009.
, 74(74) Mirzaie, S., Thuring, M., & Allacker, K. (2020). End-of-life modelling of buildings to support more informed decisions towards achieving circular economy targets. International Journal of Life Cycle Assessment, 25(11), 2122-2139. https://doi.org/10.1007/s11367-020-01807-8.
)
X X X
(1(1) Anastasiades, K., Goffin, J., Rinke, M., Buyle, M., Audenaert, A., & Blom, J. (2021). Standardisation: An essential enabler for the circular reuse of construction components? A trajectory for a cleaner European construction industry. Journal of Cleaner Production, 298. https://doi.org/10.1016/j.jclepro.2021.126864.
, 25(25) Haas, M., Galler, R., Scibile, L., & Benedikt, M. (2020). Waste or valuable resource - a critical European review on re-using and managing tunnel excavation material. Resources, Conservation and Recycling, 162, 105048. https://doi.org/10.1016/j.resconrec.2020.105048.
, 65(65) Negash, Y.T., Hassan, A.M., Tseng, M.L., Wu, K.J., & Ali, M.H. (2021). Sustainable construction and demolition waste management in Somaliland: Regulatory barriers lead to technical and environmental barriers. Journal of Cleaner Production, 297, 126717. https://doi.org/10.1016/j.jclepro.2021.126717.
)
X X 2
(53(53) Cai, G., & Waldmann, D. (2019). A material and component bank to facilitate material recycling and component reuse for a sustainable construction: concept and preliminary study. Clean Technologies and Environmental Policy, 21(10), 2015-2032. https://doi.org/10.1007/s10098-019-01758-1.
, 94(94) Hale, S. E., Roque, A. J., Okkenhaug, G., Sørmo, E., Lenoir, T., Carlsson, C., Žlender, B. (2021). The reuse of excavated soils from construction and demolition projects: Limitations and possibilities. Sustainability (Switzerland), 13(11), 1-15. https://doi.org/10.3390/su13116083.
)
X X
(6(6) Rodríguez-Robles, D., García-González, J., Juan-Valdés, A., Morán-Del Pozo, J.M., & Guerra-Romero, M.I. (2014). Overview regarding construction and demolition waste in Spain. Environmental Technology (United Kingdom), 36(23), 3060-3070. https://doi.org/10.1080/09593330.2014.957247.
)
X X
Total 69 92 27 48 91 327

Un diseño apropiado permite la correcta gestión desde etapas tempranas, lo que ayudará en la reducción de residuos a la hora de la ejecución del proyecto. Mediante la utilización de elementos prefabricados como una de las alternativas para la disminución de los impactos generados en obra (3(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
, 117(117) Frankovič, A., Ducman, V., Dolenec, S., Panizza, M., Tamburini, S., Natali, M., Bernardi, A. (2020). Up-scaling and performance assessment of façade panels produced from construction and demolition waste using alkali activation technology. Construction and Building Materials, 262, 120475. https://doi.org/10.1016/j.conbuildmat.2020.120475.
), se puede reducir hasta el 52% de la generación de residuos, evitando una gran cantidad de materiales dispuestos en vertederos ilegales o sitios de disposición final que no se aprovechan y generan problemáticas sociales y ambientales (75(75) Yu, A.T.W., Wong, I., Wu, Z., & Poon, C.S. (2021). Strategies for effective waste reduction and management of building construction projects in highly urbanized cities- a case study of hong kong. Buildings, 11(5), 1-14. https://doi.org/10.3390/buildings11050214.
, 95(95) Huang, B., Gao, X., Xu, X., Song, J., Geng, Y., Sarkis, J., Nakatani, J. (2020). A life cycle thinking framework to mitigate the environmental impact of building materials. One Earth, 3(5), 564-573. https://doi.org/10.1016/j.oneear.2020.10.010.
).

Otra de las alternativas sería la implementación de agregados reutilizados para mejorar las diferentes propiedades de los concretos y morteros (72(72) Ranjbari, M., Saidani, M., Shams Esfandabadi, Z., Peng, W., Lam, S. S., Aghbashlo, M., Tabatabaei, M. (2021). Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. Journal of Cleaner Production, 314, 128009. https://doi.org/10.1016/j.jclepro.2021.128009.
, 105(105) Lu, W., Bao, Z., Lee, W.M.W., Chi, B., & Wang, J. (2021). An analytical framework of “zero waste construction site”: Two case studies of Shenzhen, China. Waste Management, 121, 343-353. https://doi.org/10.1016/j.wasman.2020.12.029.
), que permite la reducción de hasta el 17% de consumo de energía y ayuda hasta un 26% a la cantidad de materiales reciclados aprovechados a través de las etapas de construcción, demolición, remodelación y adecuación de las obras y proyectos civiles (55(55) Collivignarelli, M.C., Cillari, G., Ricciardi, P., Miino, M.C., Torretta, V., Rada, E.C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1-34. https://doi.org/10.3390/SU12197903.
, 74(74) Mirzaie, S., Thuring, M., & Allacker, K. (2020). End-of-life modelling of buildings to support more informed decisions towards achieving circular economy targets. International Journal of Life Cycle Assessment, 25(11), 2122-2139. https://doi.org/10.1007/s11367-020-01807-8.
). Mediante la evaluación de la utilización de agregados como el vidrio, para el reemplazo parcial del cemento, permite reducir los gastos energéticos y la generación de CO2, contribuyendo a la implementación de prácticas de circularidad y aumentando los mercados sostenibles en la industria de la construcción (73(73) Caldera, S., Ryley, T., & Zatyko, N. (2020). Enablers and barriers for creating a marketplace for construction and demolition waste: A systematic literature review. Sustainability (Switzerland), 12(23), 1-19. https://doi.org/10.3390/su12239931.
, 90(90) Mercante, I.T., Bovea, M.D., Ibáñez-Forés, V., & Arena, A.P. (2012). Life cycle assessment of construction and demolition waste management systems: A Spanish case study. International Journal of Life Cycle Assessment, 17(2), 232-241. https://doi.org/10.1007/s11367-011-0350-2.
, 115(115) Nodehi, M., & Mohamad Taghvaee, V. (2021). Sustainable concrete for circular economy: a review on use of waste glass. Glass Structures and Engineering, 7, 3-22. https://doi.org/10.1007/s40940-021-00155-9.
, 124(124) Luciano, A., Cutaia, L., Cioffi, F., & Sinibaldi, C. (2020). Demolition and construction recycling unified management: the DECORUM platform for improvement of resource efficiency in the construction sector. Environmental Science and Pollution Research, 28(19), 24558-24569. https://doi.org/10.1007/s11356-020-09513-6.
).

Los beneficios que se obtienen de la adecuada separación de los materiales obtenidos a partir de la demolición y construcción de los proyectos constructivos permiten la reducción en la utilización de materiales vírgenes provenientes de la explotación minera y la cantidad de material desechado a causa de la inadecuada gestión de los recursos (25(25) Haas, M., Galler, R., Scibile, L., & Benedikt, M. (2020). Waste or valuable resource - a critical European review on re-using and managing tunnel excavation material. Resources, Conservation and Recycling, 162, 105048. https://doi.org/10.1016/j.resconrec.2020.105048.
, 58(58) Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36-44. https://doi.org/10.1016/j.resconrec.2017.09.029.
). Debido a lo anterior, es necesario asegurar la calidad y las propiedades mecánicas de los materiales luego de ser tratados para poder ser utilizados nuevamente en la fabricación de insumos de construcción, los cuales podrían suplir la demanda de materiales hasta un 41% del total necesario para llevar a cabo las actividades en obra (2(2) Jain, M.S. (2021). A mini review on generation, handling, and initiatives to tackle construction and demolition waste in India. Environmental Technology and Innovation, 22. https://doi.org/10.1016/j.eti.2021.101490.
, 87(87) Verhagen, T.J., Sauer, M.L., Voet, E. van der, & Sprecher, B. (2021). Matching demolition and construction material flows, an urban mining case study. Sustainability (Switzerland), 13(2), 1-14. https://doi.org/10.3390/su13020653.
).

CONCLUSIONES

 

El presente artículo propone un estudio basado en la revisión bibliográfica de las prácticas de circularidad en el sector de la construcción a nivel internacional para llevar a cabo un análisis de la información integrado que permita brindar estrategias articuladas a la gestión de los RCD durante el ciclo de vida y bajo abordajes comunes de actuación. Al hacer la revisión se establecieron criterios de selección basados en aspectos relevantes de los artículos, los cuales contienen información importante para lograr su integración y articulación.

La información recolectada mediante el análisis de los 131 artículos es de gran importancia y nos permite conocer aquellas estrategias que han permitido la transición hacia una economía circular, mejorando los mercados de reciclaje de los RCD y la disminución del porcentaje de desperdicios. Dichos artículos han sido sometidos a varias etapas de identificación, análisis, evaluación y posteriormente selección para poder así recopilar la información pertinente sobre el tema de interés. Se logra ver que la mayoría de los artículos analizados provienen de China, Unión Europea, España e Italia, publicados entre el 2019 y 2021, lo que nos ayuda al análisis de información reciente sobre el tema de economía circular en el sector de la construcción a nivel mundial, demostrando que países en desarrollo y en vía de desarrollo, están tomando acciones para una transición de los modelos económicos tradicionales hacia una gestión integral que permita la reducción de impactos y la generación de soluciones efectivas a las problemáticas sociales, ambientales y económicas actuales. Solamente, un grupo reducido de los autores son recurrentes en la divulgación de los resultados de investigación en el ámbito analizado de esta revisión, ya que sólo el 2.4 % de ellos ha participado en 3 o más publicaciones, la gran mayoría aparecen en una única publicación. El buen posicionamiento de los journals analizados representan un aspecto importante ya que demuestran que la información contenida es de gran relevancia y cuenta con fundamento científico. De igual manera, en las palabras clave según el análisis de ocurrencia por artículos, se evidencia la relación entre las más comunes según la clasificación realizada y el tema de interés seleccionado para el presente artículo, permitiendo un análisis más apropiado de la revisión.

Se encontraron elementos comunes de abordaje entre las publicaciones que permitieron el desarrollo de diferentes categorías como recolección de prácticas de circularidad, análisis sectorial, materiales, tecnología y normativa. Lo anterior permitió facilitar la caracterización de las estrategias y su relacionamiento con los autores. También se nota por parte de los investigadores la búsqueda que propenden por incluir más actores de la cadena de valor de la industria de la construcción tales como recolectores de residuos, proveedores, empresas constructoras, los gobiernos locales, diseñadores, arquitectos, ingenieros, para el involucramiento de la creación y desarrollo de entrevistas, encuestas y conocer sus acciones o líneas de actuación en los proyectos en la actualidad. De acuerdo con la tecnología se muestra como la simulación de operaciones, los sistemas de información geográfica y el BIM (Building Information Modeling), empiezan a tomar importancia en la toma de decisiones en la búsqueda de reducción de materiales de construcción. Desde el punto de vista de los materiales se realizan sustituciones parciales de materiales de los RCD e identificación de procesos que mejoran la producción de estos. Finalmente, desde el punto de vista normativo, se muestra la importancia de los incentivos desarrollados por la normativa de unas regulaciones claras que permitan realmente la promoción y la reutilización de los RCD en diferentes fases del ciclo de vida. Todo esto ha promovido la creación de economías emergentes enfocadas en el aprovechamiento de materiales provenientes de las diferentes etapas, pero especialmente en las finales como demolición o deconstrucción.

Respecto al ciclo de vida se comparó a aquellos artículos que cumplen con todas las etapas o que tienen un impacto en cada proceso desde la planeación hasta la puesta en marcha y posteriormente la demolición de los proyectos. Se encontró que varios artículos cumplían entre 2 y 5 etapas, las cuales son Diseño-planeación, Construcción, Uso, Restauración-rehabilitación, Deconstrucción-Demolición. Cuando se habla del ciclo de vida no todos los autores toman las fases correspondientes, hay abordajes situados en algunas de ellas. En esta investigación se comprueba que solamente una parte de ellas aborda 4 o 5 de las fases en su totalidad, por lo general la gran mayoría toman en cuenta 3 fases, pero las más comunes son la fase de planeación, construcción y demolición. Finalmente, se encuentran muchas investigaciones que hablan del ciclo de vida y su importancia, pero sus abordajes están limitados a una o dos fases del ciclo de vida mencionado.

REFERENCIAS

 
(1) Anastasiades, K., Goffin, J., Rinke, M., Buyle, M., Audenaert, A., & Blom, J. (2021). Standardisation: An essential enabler for the circular reuse of construction components? A trajectory for a cleaner European construction industry. Journal of Cleaner Production, 298. https://doi.org/10.1016/j.jclepro.2021.126864.
(2) Jain, M.S. (2021). A mini review on generation, handling, and initiatives to tackle construction and demolition waste in India. Environmental Technology and Innovation, 22. https://doi.org/10.1016/j.eti.2021.101490.
(3) Lv, H., Li, Y., Yan, H. Bin, Wu, D., Shi, G., & Xu, Q. (2020). Examining construction waste management policies in mainland China for potential performance improvements. Clean Technologies and Environmental Policy, 23(2), 445-462. https://doi.org/10.1007/s10098-020-01984-y.
(4) Spišáková, M., Mésároš, P., & Mandičák, T. (2021). Construction waste audit in the framework of sustainable waste management in construction projects-case study. Buildings, 11(2), 1-16. https://doi.org/10.3390/buildings11020061.
(5) Aslam, M. S., Huang, B., & Cui, L. (2020). Review of construction and demolition waste management in China and USA. Journal of Environmental Management, 264 (March). https://doi.org/10.1016/j.jenvman.2020.110445.
(6) Rodríguez-Robles, D., García-González, J., Juan-Valdés, A., Morán-Del Pozo, J.M., & Guerra-Romero, M.I. (2014). Overview regarding construction and demolition waste in Spain. Environmental Technology (United Kingdom), 36(23), 3060-3070. https://doi.org/10.1080/09593330.2014.957247.
(7) López Ruiz, L. A., Roca Ramón, X., & Gassó Domingo, S. (2020). The circular economy in the construction and demolition waste sector - A review and an integrative model approach. Journal of Cleaner Production, 248. https://doi.org/10.1016/j.jclepro.2019.119238.
(8) Chinda, T. (2016). Investigation of factors affecting a construction waste recycling decision. Civil Engineering and Environmental Systems, 33(3), 214-226. https://doi.org/10.1080/10286608.2016.1161030.
(9) Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z., & Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263. https://doi.org/10.1016/j.jclepro.2020.121458.
(10) Charef, R., & Emmitt, S. (2021). Uses of building information modelling for overcoming barriers to a circular economy. Journal of Cleaner Production, 285. https://doi.org/10.1016/j.jclepro.2020.124854.
(11) Ganiyu, S.A., Oyedele, L.O., Akinade, O., Owolabi, H., Akanbi, L., & Gbadamosi, A. (2020). BIM competencies for delivering waste-efficient building projects in a circular economy. Developments in the Built Environment, 4, 100036. https://doi.org/10.1016/j.dibe.2020.100036.
(12) Ghisellini, P., Ripa, M., & Ulgiati, S. (2018). Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. Journal of Cleaner Production, 178, 618-643. https://doi.org/10.1016/j.jclepro.2017.11.207.
(13) Wu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Status quo and future directions of construction and demolition waste research: A critical review. Journal of Cleaner Production, 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163.
(14) Gálvez-Martos, J.L., Styles, D., Schoenberger, H., & Zeschmar-Lahl, B. (2018a). Construction and demolition waste best management practice in Europe. Resources, Conservation and Recycling, 136, 166-178. https://doi.org/10.1016/j.resconrec.2018.04.016.
(15) Bao, Z., Lee, W.M.W., & Lu, W. (2020). Implementing on-site construction waste recycling in Hong Kong: Barriers and facilitators. Science of the Total Environment, 747, 141091. https://doi.org/10.1016/j.scitotenv.2020.141091.
(16) Antwi-Afari, P., Ng, S.T., & Hossain, M.U. (2021). A review of the circularity gap in the construction industry through scientometric analysis. Journal of Cleaner Production, 298, 126870. https://doi.org/10.1016/j.jclepro.2021.126870.
(17) Wijewickrama, M.K.C.S., Rameezdeen, R., & Chileshe, N. (2021). Information brokerage for circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production, 313, 127938. https://doi.org/10.1016/j.jclepro.2021.127938.
(18) Barbudo, A., Ayuso, J., Lozano, A., Cabrera, M., & López-Uceda, A. (2020). Recommendations for the management of construction and demolition waste in treatment plants. Environmental Science and Pollution Research, 27(1), 125-132. https://doi.org/10.1007/s11356-019-05578-0.
(19) Christensen, T. B. (2021). Towards a circular economy in cities: Exploring local modes of governance in the transition towards a circular economy in construction and textile recycling. Journal of Cleaner Production, 305, 127058. https://doi.org/10.1016/j.jclepro.2021.127058.
(20) Rajagopalan, N., Brancart, S., De Regel, S., Paduart, A., De Temmerman, N., & Debacker, W. (2021). Multi-criteria decision analysis using life cycle assessment and life cycle costing in circular building design: A case study for wall partitioning systems in the circular retrofit lab. Sustainability (Switzerland), 13(9), 5124. https://doi.org/10.3390/su13095124.
(21) Morató, J., Tollin, N., & Jiménez, L. (2017). Situación y evolución de la economía circular en españa (Fundación). Madrid.
(22) Gangolells, M., Casals, M., Forcada, N., & Macarulla, M. (2014). Analysis of the implementation of effective waste management practices in construction projects and sites. Resources, Conservation and Recycling, 93, 99-111. https://doi.org/10.1016/j.resconrec.2014.10.006.
(23) Robayo Salazar, R.A., Mattey Centeno, P.E., Silva Urrego, Y.F., Burgos Galindo, D.M., & Delvasto Arjona, S. (2015). Los residuos de la construcción y demolición en la ciudad de Cali: un análisis hacia su gestión, manejo y aprovechamiento. Tecnura, 19(44), 157-170.
(24) Suárez-Silgado, S.S., Betancourt Quiroga, C., Molina Benavides, J., & Mahecha Vanegas, L. (2019). La gestión de los residuos de construcción y demolición en Villavicencio: estado actual, barreras e instrumentos de gestión. Entramado, 15(1), 224-244. https://doi.org/10.18041/1900-3803/entramado.1.5408.
(25) Haas, M., Galler, R., Scibile, L., & Benedikt, M. (2020). Waste or valuable resource - a critical European review on re-using and managing tunnel excavation material. Resources, Conservation and Recycling, 162, 105048. https://doi.org/10.1016/j.resconrec.2020.105048.
(26) Liu, H., Long, H., & Li, X. (2020). Identification of critical factors in construction and demolition waste recycling by the grey-DEMATEL approach: a Chinese perspective. Environmental Science and Pollution Research, 27(8), 8507-8525. https://doi.org/10.1007/s11356-019-07498-5.
(27) Rondinel-Oviedo, D.R. (2021). Construction and demolition waste management in developing countries: a diagnosis from 265 construction sites in the Lima Metropolitan Area. International Journal of Construction Management. https://doi.org/10.1080/15623599.2021.1874677.
(28) Lederer, J., Gassner, A., Kleemann, F., & Fellner, J. (2020). Potentials for a circular economy of mineral construction materials and demolition waste in urban areas: a case study from Vienna. Resources, Conservation and Recycling, 161, 104942. https://doi.org/10.1016/j.resconrec.2020.104942.
(29) Universidad Industrial de Santander, & Unidad de planeación minero Energética. (2018). Realizar un análisis del potencial de reutilización de minerales en colombia y definir estrategias orientadas a fomentar su aprovechamiento por parte de la industria en el país bajo el enfoque de economía circularcontrato interadministrativo Ci-049-2018. Noviembre, (3), 468. Retrieved from http://www.andi.com.co/Uploads/Documento Análisis Nacional.pdf.
(30) Soto, E.P., Restrepo, D.P., Subdirector, M., Diana, A., Castro, F., Líder, H., Villada, S. (2016). Plan de gestión integral de residuos sólidos regional del área metropólitana del valle de aburrá. Acodal Seccional Noroccidente, 95.
(31) Guerrero Cruz, J.A. (2019). Guía técnica para la implementación de la resolución 0472/2017 - residuos generados en las actividades de construcción y demolición con énfasis en las obligaciones de la autoridad ambiental en Villavicencio, 8(5), 55.
(32) Gethsemane Akhimi, N., Latfi, E., & Shan Shan, H. (2020). Application of circular economy principles in buildings: A systematic review. Journal of Building Engineering, 44, 24-27.
(33) Laovisutthichai, V., Lu, W., & Bao, Z. (2020). Design for construction waste minimization: guidelines and practice. Architectural Engineering and Design Management. 18(3), 279-298. https://doi.org/10.1080/17452007.2020.1862043.
(34) Eberhardt, L.C.M., Birkved, M., & Birgisdottir, H. (2020). Building design and construction strategies for a circular economy. Architectural Engineering and Design Management, 18(2), 93-113. https://doi.org/10.1080/17452007.2020.1781588.
(35) Superti, V., Houmani, C., Hansmann, R., Baur, I., & Binder, C.R. (2021). Strategies for a circular economy in the construction and demolition sector: Identifying the factors affecting the recommendation of recycled concrete. Sustainability (Switzerland), 13(8), 4113. https://doi.org/10.3390/su13084113.
(36) Ghisellini, P., Ji, X., Liu, G., & Ulgiati, S. (2018). Evaluating the transition towards cleaner production in the construction and demolition sector of China: A review. Journal of Cleaner Production, 195, 418-434. https://doi.org/10.1016/j.jclepro.2018.05.084.
(37) Purnell, P. (2017). On a voyage of recovery: a review of the UK’s resource recovery from waste infrastructure. Sustainable and Resilient Infrastructure, 4(1), 1-20. https://doi.org/10.1080/23789689.2017.1405654.
(38) Fořt, J., & Černý, R. (2020). Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Management, 118, 510-520. https://doi.org/10.1016/j.wasman.2020.09.004.
(39) Chen, Y., & Zhou, Y. (2020). The contents and release behavior of heavy metals in construction and demolition waste used in freeway construction. Environmental Science and Pollution Research, 27(1), 1078-1086. https://doi.org/10.1007/s11356-019-07067-w.
(40) Park, J., & Tucker, R. (2016). Overcoming barriers to the reuse of construction waste material in Australia: a review of the literature. International Journal of Construction Management, 17(3), 228-237. https://doi.org/10.1080/15623599.2016.1192248.
(41) Chen, K., Wang, J., Yu, B., Wu, H., & Zhang, J. (2021). Critical evaluation of construction and demolition waste and associated environmental impacts: A scientometric analysis. Journal of Cleaner Production, 287, 125071. https://doi.org/10.1016/j.jclepro.2020.125071.
(42) Bigolin, M., Danilevicz, Â.D.M.F., Weiss, M.A., & Silva Filho, L.C.P. (2021). Sustainable new product development: a decision-making tool for the construction industry. International Journal of Sustainable Engineering, 14(4), 618-629. https://doi.org/10.1080/19397038.2021.1920642.
(43) Mahpour, A. (2018). Prioritizing barriers to adopt circular economy in construction and demolition waste management. Resources, Conservation and Recycling, 134, 216-227. https://doi.org/10.1016/j.resconrec.2018.01.026.
(44) Ghaffar, S. H., Burman, M., & Braimah, N. (2020). Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. Journal of Cleaner Production, 244, 118710. https://doi.org/10.1016/j.jclepro.2019.118710.
(45) Priti, & Mandal, K. (2019). Review on evolution of municipal solid waste management in India: practices, challenges and policy implications. Journal of Material Cycles and Waste Management, 21(6), 1263-1279. https://doi.org/10.1007/s10163-019-00880-y.
(46) Górecki, J., Núñez-Cacho, P., Corpas-Iglesias, F.A., & Molina, V. (2019). How to convince players in construction market? Strategies for effective implementation of circular economy in construction sector. Cogent Engineering, 6(1), 1690760. https://doi.org/10.1080/23311916.2019.1690760.
(47) Calvo, N., Varela-Candamio, L., & Novo-Corti, I. (2014). A dynamic model for construction and demolition (C&D) waste management in Spain: Driving policies based on economic incentives and tax penalties. Sustainability (Switzerland), 6(1), 416-435. https://doi.org/10.3390/su6010416.
(48) Gerding, D.P., Wamelink, H., & Leclercq, E.M. (2021). Implementing circularity in the construction process: a case study examining the reorganization of multi-actor environment and the decision-making process. Construction Management and Economics, 39(7), 617-635. https://doi.org/10.1080/01446193.2021.1934885.
(49) Lu, W., & Yuan, H. (2010). Exploring critical success factors for waste management in construction projects of China. Resources, Conservation and Recycling, 55(2), 201-208. https://doi.org/10.1016/j.resconrec.2010.09.010.
(50) Zhao, X. (2021). Stakeholder-associated factors influencing construction and demolition waste management: a systematic review. Buildings, 11(149), 1-22. https://doi.org/10.3390/buildings11040149.
(51) Amine Laadila, M., LeBihan, Y., Caron, R.F., & Vaneeckhaute, C. (2021). Construction, renovation and demolition (CRD) wastes contaminated by gypsum residues: Characterization, treatment and valorization. Waste Management, 120, 125-135. https://doi.org/10.1016/j.wasman.2020.11.031.
(52) Bonoli, A., Zanni, S., & Serrano-Bernardo, F. (2021). Sustainability in building and construction within the framework of circular cities and european new green deal. The contribution of concrete recycling. Sustainability (Switzerland), 13(4), 1-16. https://doi.org/10.3390/su13042139.
(53) Cai, G., & Waldmann, D. (2019). A material and component bank to facilitate material recycling and component reuse for a sustainable construction: concept and preliminary study. Clean Technologies and Environmental Policy, 21(10), 2015-2032. https://doi.org/10.1007/s10098-019-01758-1.
(54) Caneda-martínez, L., Monasterio, M., Moreno-juez, J., Martínez-ramírez, S., García, R., & Frías, M. (2021). Behaviour and properties of eco-cement pastes elaborated with recycled concrete powder from construction and demolition wastes. Materials, 14(5), 1-19. https://doi.org/10.3390/ma14051299.
(55) Collivignarelli, M.C., Cillari, G., Ricciardi, P., Miino, M.C., Torretta, V., Rada, E.C., & Abbà, A. (2020). The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability (Switzerland), 12(19), 1-34. https://doi.org/10.3390/SU12197903.
(56) Lovrenčić Butković, L., Mihić, M., & Sigmund, Z. (2021). Assessment methods for evaluating circular economy projects in construction: a review of available tools. International Journal of Construction Management. https://doi.org/10.1080/15623599.2021.1942770.
(57) L. Du, Y. Feng, W. Lu, L. Kong, and Z. Yang (2020). Evolutionary game analysis of stakeholders’ decision-making behaviours in construction and demolition waste management. Environmental Impact Assessment Review, 84, 106408. https://doi.org/10.1016/j.eiar.2020.106408.
(58) Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36-44. https://doi.org/10.1016/j.resconrec.2017.09.029.
(59) Gálvez-Martos, J.L., Styles, D., Schoenberger, H., & Zeschmar-Lahl, B. (2018b). Construction and demolition waste best management practice in Europe. Resources, Conservation and Recycling, 136, 166-178. https://doi.org/10.1016/j.resconrec.2018.04.016.
(60) Yuan, H. (2017). Barriers and countermeasures for managing construction and demolition waste: A case of Shenzhen in China. Journal of Cleaner Production, 157, 84-93. https://doi.org/10.1016/j.jclepro.2017.04.137.
(61) Kim, S.Y. (2020). A performance evaluation framework for construction and demolition waste management : stakeholder perspectives. Engineering, Construction and Architectural Management, 27(10), 3189-3213. https://doi.org/10.1108/ECAM-12-2019-0683.
(62) Llinares-Millán, C., Fernández-Plazaola, I., Hidalgo-Delgado, F., Martínez-Valenzuela, M.M., Medina-Ramón, F.J., Oliver-Faubel, I., Tort-Ausina, I. (2014). Construction and building research. Construction and Building Research, 1-553. https://doi.org/10.1007/978-94-007-7790-3.
(63) Munaro, M.R., Tavares, S.F., & Bragança, L. (2020). Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. Journal of Cleaner Production, 260, 121134. https://doi.org/10.1016/j.jclepro.2020.121134.
(64) Bilal, M., Khan, K.I.A., Thaheem, M.J., & Nasir, A.R. (2020). Current state and barriers to the circular economy in the building sector: Towards a mitigation framework. Journal of Cleaner Production, 276, 123250. https://doi.org/10.1016/j.jclepro.2020.123250.
(65) Negash, Y.T., Hassan, A.M., Tseng, M.L., Wu, K.J., & Ali, M.H. (2021). Sustainable construction and demolition waste management in Somaliland: Regulatory barriers lead to technical and environmental barriers. Journal of Cleaner Production, 297, 126717. https://doi.org/10.1016/j.jclepro.2021.126717.
(66) Akinade, O., Oyedele, L., Oyedele, A., Davila Delgado, J.M., Bilal, M., Akanbi, L., Owolabi, H. (2019). Design for deconstruction using a circular economy approach: barriers and strategies for improvement. Production Planning and Control, 31(10), 829-840. https://doi.org/10.1080/09537287.2019.1695006.
(67) Esa, M.R., Halog, A., & Rigamonti, L. (2017a). Developing strategies for managing construction and demolition wastes in Malaysia based on the concept of circular economy. Journal of Material Cycles and Waste Management, 19(3), 1144-1154. https://doi.org/10.1007/s10163-016-0516-x.
(68) Kabirifar, K., Mojtahedi, M., Wang, C., & Tam, V.W.Y. (2020). Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. Journal of Cleaner Production, 263, 121265. https://doi.org/10.1016/j.jclepro.2020.121265.
(69) Cristiano, S., Ghisellini, P., D’Ambrosio, G., Xue, J., Nesticò, A., Gonella, F., & Ulgiati, S. (2021). Construction and demolition waste in the Metropolitan City of Naples, Italy: State of the art, circular design, and sustainable planning opportunities. Journal of Cleaner Production, 293, 125856. https://doi.org/10.1016/j.jclepro.2021.125856.
(70) Guerra, B. C., & Leite, F. (2021). Circular economy in the construction industry: An overview of United States stakeholders’ awareness, major challenges, and enablers. Resources, Conservation and Recycling, 170, 105617. https://doi.org/10.1016/j.resconrec.2021.105617.
(71) Superti, V., Houmani, C., & Binder, C. R. (2021). A systemic framework to categorize Circular Economy interventions: An application to the construction and demolition sector. Resources, Conservation and Recycling, 173, 105711. https://doi.org/10.1016/j.resconrec.2021.105711.
(72) Ranjbari, M., Saidani, M., Shams Esfandabadi, Z., Peng, W., Lam, S. S., Aghbashlo, M., Tabatabaei, M. (2021). Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. Journal of Cleaner Production, 314, 128009. https://doi.org/10.1016/j.jclepro.2021.128009.
(73) Caldera, S., Ryley, T., & Zatyko, N. (2020). Enablers and barriers for creating a marketplace for construction and demolition waste: A systematic literature review. Sustainability (Switzerland), 12(23), 1-19. https://doi.org/10.3390/su12239931.
(74) Mirzaie, S., Thuring, M., & Allacker, K. (2020). End-of-life modelling of buildings to support more informed decisions towards achieving circular economy targets. International Journal of Life Cycle Assessment, 25(11), 2122-2139. https://doi.org/10.1007/s11367-020-01807-8.
(75) Yu, A.T.W., Wong, I., Wu, Z., & Poon, C.S. (2021). Strategies for effective waste reduction and management of building construction projects in highly urbanized cities- a case study of hong kong. Buildings, 11(5), 1-14. https://doi.org/10.3390/buildings11050214.
(76) Villoria Sáez, P., & Osmani, M. (2019). A diagnosis of construction and demolition waste generation and recovery practice in the European Union. Journal of Cleaner Production, 241. https://doi.org/10.1016/j.jclepro.2019.118400.
(77) Passos, J., Alves, O., & Brito, P. (2020). Management of municipal and construction and demolition wastes in Portugal: future perspectives through gasification for energetic valorisation. International Journal of Environmental Science and Technology, 17(5), 2907-2926. https://doi.org/10.1007/s13762-020-02656-6.
(78) Asgari, A., Ghorbanian, T., Yousefi, N., Dadashzadeh, D., Khalili, F., Bagheri, A., Mahvi, A.H. (2017). Quality and quantity of construction and demolition waste in Tehran. Journal of Environmental Health Science and Engineering, 15(1), 1-8. https://doi.org/10.1186/s40201-017-0276-0.
(79) Joensuu, T., Edelman, H., & Saari, A. (2020). Circular economy practices in the built environment. Journal of Cleaner Production, 276, 124215. https://doi.org/10.1016/j.jclepro.2020.124215.
(80) Rodrigues, C., & Freire, F. (2021). Environmental impacts and costs of residential building retrofits - What matters? Sustainable Cities and Society, 67, 102733. https://doi.org/10.1016/j.scs.2021.102733.
(81) Mak, T.M.W., Yu, I.K.M., Wang, L., Hsu, S.C., Tsang, D.C.W., Li, C.N., Poon, C.S. (2019). Extended theory of planned behaviour for promoting construction waste recycling in Hong Kong. Waste Management, 83, 161-170. https://doi.org/10.1016/j.wasman.2018.11.016.
(82) Iodice, S., Garbarino, E., Cerreta, M., & Tonini, D. (2021). Sustainability assessment of Construction and Demolition Waste management applied to an Italian case. Waste Management, 128, 83-98. https://doi.org/10.1016/j.wasman.2021.04.031.
(83) Kabirifar, K., Mojtahedi, M., Changxin Wang, C., & Vivian W.Y.T. (2020). A conceptual foundation for effective construction and demolition waste management. Cleaner Engineering and Technology, 1, 100019. https://doi.org/10.1016/j.clet.2020.100019.
(84) Esa, M.R., Halog, A., & Rigamonti, L. (2017b). Strategies for minimizing construction and demolition wastes in Malaysia. Resources, Conservation and Recycling, 120, 219-229. https://doi.org/10.1016/j.resconrec.2016.12.014.
(85) Bao, Z., Lu, W., & Hao, J. (2021). Tackling the “last mile” problem in renovation waste management: A case study in China. Science of the Total Environment, 790, 148261. https://doi.org/10.1016/j.scitotenv.2021.148261.
(86) Esguícero, F.J., Deus, R.M., Battistelle, R., Martins, B.L., & Bezerra, B.S. (2021). Construction and demolition waste management process modeling: a framework for the Brazilian context. Journal of Material Cycles and Waste Management, 23(5), 2037-2050. https://doi.org/10.1007/s10163-021-01247-y.
(87) Verhagen, T.J., Sauer, M.L., Voet, E. van der, & Sprecher, B. (2021). Matching demolition and construction material flows, an urban mining case study. Sustainability (Switzerland), 13(2), 1-14. https://doi.org/10.3390/su13020653.
(88) Mhatre, P., Gedam, V., Unnikrishnan, S., & Verma, S. (2020). Circular economy in built environme t - Literature review and theory development. Journal of Building Engineering, 35, 101995. https://doi.org/10.1016/j.jobe.2020.101995.
(89) Bertino, G., Kisser, J., Zeilinger, J., Langergraber, G., Fischer, T., & Österreicher, D. (2021). Fundamentals of building deconstruction as a circular economy strategy for the reuse of construction materials. Applied Sciences (Switzerland), 11(3), 1-31. https://doi.org/10.3390/app11030939.
(90) Mercante, I.T., Bovea, M.D., Ibáñez-Forés, V., & Arena, A.P. (2012). Life cycle assessment of construction and demolition waste management systems: A Spanish case study. International Journal of Life Cycle Assessment, 17(2), 232-241. https://doi.org/10.1007/s11367-011-0350-2.
(91) Borbon-Galvez, Y., Curi, S., Dallari, F., & Ghiringhelli, G. (2021). International industrial symbiosis: Cross-border management of aggregates and construction and demolition waste between Italy and Switzerland. Sustainable Production and Consumption, 25, 312-324. https://doi.org/10.1016/j.spc.2020.09.004.
(92) Tazi, N., Idir, R., & Ben Fraj, A. (2020). Towards achieving circularity in residential building materials: Potential stock, locks and opportunities. Journal of Cleaner Production, 281, 124489. https://doi.org/10.1016/j.jclepro.2020.124489.
(93) Vitale, F., & Nicolella, M. (2021). Mortars with recycled aggregates from building-related processes: A ‘four-step’ methodological proposal for a review. Sustainability (Switzerland), 13(5), 1-32. https://doi.org/10.3390/su13052756.
(94) Hale, S. E., Roque, A. J., Okkenhaug, G., Sørmo, E., Lenoir, T., Carlsson, C., Žlender, B. (2021). The reuse of excavated soils from construction and demolition projects: Limitations and possibilities. Sustainability (Switzerland), 13(11), 1-15. https://doi.org/10.3390/su13116083.
(95) Huang, B., Gao, X., Xu, X., Song, J., Geng, Y., Sarkis, J., Nakatani, J. (2020). A life cycle thinking framework to mitigate the environmental impact of building materials. One Earth, 3(5), 564-573. https://doi.org/10.1016/j.oneear.2020.10.010.
(96) Santos, M.T., Lamego, P., & Frade, P. (2017). Management options for construction and demolition wastes from residential recuperation. Waste and Biomass Valorization, 8(5), 1679-1687. https://doi.org/10.1007/s12649-016-9675-1.
(97) Arm, M., Wik, O., Engelsen, C.J., Erlandsson, M., Hjelmar, O., & Wahlström, M. (2017). How does the european recovery target for construction & demolition waste affect resource management? Waste and Biomass Valorization, 8(5), 1491-1504. https://doi.org/10.1007/s12649-016-9661-7.
(98) Su, Y., Si, H., Chen, J., & Wu, G. (2020). Promoting the sustainable development of the recycling market of construction and demolition waste: A stakeholder game perspective. Journal of Cleaner Production, 277, 122281. https://doi.org/10.1016/j.jclepro.2020.122281.
(99) Luciano, A., Cutaia, L., Cioffi, F., & Sinibaldi, C. (2021). Demolition and construction recycling unified management: the DECORUM platform for improvement of resource efficiency in the construction sector. Environmental Science and Pollution Research, 28(19), 24558-24569. https://doi.org/10.1007/s11356-020-09513-6.
(100) Jesus, S., Pederneiras, C.M., Farinha, C.B., de Brito, J., & Veiga, R. (2021). Reduction of the cement content by incorporation of fine recycled aggregates from construction and demolition waste in rendering mortars. Infrastructures, 6(1), 1-16. https://doi.org/10.3390/infrastructures6010011.
(101) Taboada, G.L., Seruca, I., Sousa, C., & Pereira, Á. (2020). Exploratory data analysis and data envelopment analysis of construction and demolitionwaste management in the European economic area. Sustainability (Switzerland), 12(12), 4995. https://doi.org/10.3390/su12124995.
(102) Sparrevik, M., de Boer, L., Michelsen, O., Skaar, C., Knudson, H., & Fet, A.M. (2021). Circular economy in the construction sector: advancing environmental performance through systemic and holistic thinking. Environment Systems and Decisions, 41(3), 392-400. https://doi.org/10.1007/s10669-021-09803-5.
(103) Lockrey, S., Nguyen, H., Crossin, E., & Verghese, K. (2016). Recycling the construction and demolition waste in Vietnam: opportunities and challenges in practice. Journal of Cleaner Production, 133, 757-766. https://doi.org/10.1016/j.jclepro.2016.05.175.
(104) Bao, Z., & Lu, W. (2020). Developing efficient circularity for construction and demolition waste management in fast emerging economies: Lessons learned from Shenzhen, China. Science of the Total Environment, 724, 1-9. https://doi.org/10.1016/j.scitotenv.2020.138264.
(105) Lu, W., Bao, Z., Lee, W.M.W., Chi, B., & Wang, J. (2021). An analytical framework of “zero waste construction site”: Two case studies of Shenzhen, China. Waste Management, 121, 343-353. https://doi.org/10.1016/j.wasman.2020.12.029.
(106) Bao, Z., & Lu, W. (2021). A decision-support framework for planning construction waste recycling: A case study of Shenzhen, China. Journal of Cleaner Production, 309, 127449. https://doi.org/10.1016/j.jclepro.2021.127449.
(107) Augiseau, V., & Kim, E. (2021). Spatial characterization of construction material stocks: The case of the Paris region. Resources, Conservation and Recycling, 170, 105512. https://doi.org/10.1016/j.resconrec.2021.105512.
(108) Liu, J., Liu, Y., & Wang, X. (2020). An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou. Environmental Science and Pollution Research, 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.
(109) Davis, P., Aziz, F., Newaz, M.T., Sher, W., & Simon, L. (2021). The classification of construction waste material using a deep convolutional neural network. Automation in Construction, 122, 103481. https://doi.org/10.1016/j.autcon.2020.103481.
(110) Hahladakis, J. N., Purnell, P., & Aljabri, H. M. S. J. (2020). Assessing the role and use of recycled aggregates in the sustainable management of construction and demolition waste via a mini-review and a case study. Waste Management and Research, 38(4), 460-471. https://doi.org/10.1177/0734242X19897816.
(111) Lockrey, S., Verghese, K., Crossin, E., & Nguyen, H. (2018). Concrete recycling life cycle flows and performance from construction and demolition waste in Hanoi. Journal of Cleaner Production, 179, 593-604. https://doi.org/10.1016/j.jclepro.2017.12.271.
(112) Pathak, A., Kumar, S., & Jha, V.K. (2014). Development of building material from geopolymerization of Construction and Demolition Waste (CDW). Transactions of the Indian Ceramic Society, 73(2), 133-137. https://doi.org/10.1080/0371750X.2014.922429.
(113) Ferdous, W., Manalo, A., Siddique, R., Mendis, P., Zhuge, Y., Wong, H.S., Schubel, P. (2021). Recycling of landfill wastes (tyres, plastics and glass) in construction - A review on global waste generation, performance, application and future opportunities. Resources, Conservation and Recycling, 173, 105745. https://doi.org/10.1016/j.resconrec.2021.105745.
(114) Cal, B.F. De, Garrido-Marijuan, A., Eguiarte, O., Arregi, B., Romero-Amorrortu, A., Mezzasalma, G., Bernardi, A. (2021). Energy performance assessment of innovative building solutions coming from construction and demolition waste materials. Materials, 14(5), 1-15. https://doi.org/10.3390/ma14051226.
(115) Nodehi, M., & Mohamad Taghvaee, V. (2021). Sustainable concrete for circular economy: a review on use of waste glass. Glass Structures and Engineering, 7, 3-22. https://doi.org/10.1007/s40940-021-00155-9.
(116) Foster, G., Kreinin, H., & Stagl, S. (2020). The future of circular environmental impact indicators for cultural heritage buildings in Europe. Environmental Sciences Europe, 32(1), 141. https://doi.org/10.1186/s12302-020-00411-9.
(117) Frankovič, A., Ducman, V., Dolenec, S., Panizza, M., Tamburini, S., Natali, M., Bernardi, A. (2020). Up-scaling and performance assessment of façade panels produced from construction and demolition waste using alkali activation technology. Construction and Building Materials, 262, 120475. https://doi.org/10.1016/j.conbuildmat.2020.120475.
(118) Ulsen, C., Antoniassi, J.L., Martins, I.M., & Kahn, H. (2021). High quality recycled sand from mixed CDW - Is that possible? Journal of Materials Research and Technology, 12, 29-42. https://doi.org/10.1016/j.jmrt.2021.02.057.
(119) Bao, Z., Lu, W., Chi, B., Yuan, H., & Hao, J. (2019). Procurement innovation for a circular economy of construction and demolition waste: Lessons learnt from Suzhou, China. Waste Management, 99, 12-21. https://doi.org/10.1016/j.wasman.2019.08.031.
(120) Yu, D., Duan, H., Song, Q., Li, X., Zhang, H., Zhang, H., Wang, J. (2018). Characterizing the environmental impact of metals in construction and demolition waste. Environmental Science and Pollution Research, 25(14), 13823-13832. https://doi.org/10.1007/s11356-018-1632-z.
(121) Drochytka, R., Dufek, Z., Michalčíková, M., & Hodul, J. (2020). Study of possibilities of using special types of building and demolition waste in civil engineering. Periodica Polytechnica Civil Engineering, 64(1), 304-314. https://doi.org/10.3311/PPci.15128.
(122) Esparza, L. A., Ossa, A., & Botero, E. (2020). Evaluation of the complex dynamic modulus of asphaltic concretes manufactured with construction and demolition waste (CDW) aggregates. Environmental Science and Pollution Research, 27(11), 11575-11586. https://doi.org/10.1007/s11356-020-07727-2.
(123) Van Tuan, N., Kien, T.T., Huyen, D.T.T., Nga, T.T.V., Giang, N.H., Dung, N.T., Kawamoto, K. (2018). Current status of construction and demolition waste management in Vietnam: Challenges and opportunities. International Journal of GEOMATE, 15(52), 23-29. https://doi.org/10.21660/2018.52.7194.
(124) Luciano, A., Cutaia, L., Cioffi, F., & Sinibaldi, C. (2020). Demolition and construction recycling unified management: the DECORUM platform for improvement of resource efficiency in the construction sector. Environmental Science and Pollution Research, 28(19), 24558-24569. https://doi.org/10.1007/s11356-020-09513-6.
(125) Liu, J., Teng, Y., Wang, D., & Gong, E. (2020). Environmental toxicology and biogeochemistry of ecosystems system dynamic analysis of construction waste recycling industry chain in China, 27, 37260-37277. https://doi.org/10.1007/s11356-019-06739-x.
(126) Li, A. (2020). All that is solid. Journal of Architectural Education, 74(2), 299-308. https://doi.org/10.1080/10464883.2020.1790940.
(127) Paschoalin Filho, J.A., Bezerra, C.M. da S., & Guerner Dias, A.J. (2020). Environmental indicators proposal for construction solid waste management plans assessment. Management of Environmental Quality: An International Journal, 31(6), 1623-1645. https://doi.org/10.1108/MEQ-07-2019-0153.
(128) Janjua, S. Y., Sarker, P. K., & Biswas, W. K. (2021). Sustainability implications of service life on residential buildings - An application of life cycle sustainability assessment framework. Environmental and Sustainability Indicators, 10, 100109. https://doi.org/10.1016/j.indic.2021.100109.
(129) Saez, P. V., Del Río Merino, M., San-Antonio González, A., & Porras-Amores, C. (2013). Best practice measures assessment for construction and demolition waste management in building constructions. Resources, Conservation and Recycling, 75, 52-62. https://doi.org/10.1016/j.resconrec.2013.03.009.
(130) Hjaltadóttir, R. E., & Hild, P. (2021). Circular Economy in the building industry European policy and local practices. European Planning Studies, 29(12), 2226-2251. https://doi.org/10.1080/09654313.2021.1904838.
(131) Jain, S., Singhal, S. and Jain N.K. (2019). Construction and demolition waste generation in cities in India: an integrated approach.International Journal of Sustainable Engineering, 12(5), 333-340. https://doi.org/10.1080/19397038.2019.1612967.
(132) Shooshtarian, S., Caldera, S., Maqsood, T., & Ryley, T. (2020). Using recycled construction and demolition waste products: A review of stakeholders’ perceptions, decisions, and motivations. Recycling, 5(4), 1-16. https://doi.org/10.3390/recycling5040031.