Application of seismic refraction tomography and microtremor analysis as geophysical prospecting techniques in geotechnical studies in building

Authors

  • C. Pérez Universidad de Alicante
  • M. Mateo Universidad de Alicante
  • A. Maciá Universidad de Alicante

DOI:

https://doi.org/10.3989/ic.11.112

Keywords:

Geophysical prospecting techniques, seismic refraction tomography, microtremor analysis, geotechnical study

Abstract


Although the CTE facilitates the application of geophysical prospecting techniques as complementary information to mechanical borings for the geotechnical characterization of the ground, its use in building is little widespread, making appropriate studies that analyze the benefits of its use. This article presents a comparative analysis of the results obtained using an experimental campaign with geophysical and traditional prospecting techniques. The methodology used has consisted in the characterization of a ground by seismic refraction tomography with microtremor analysis and mechanical borings, comparing them with the data obtained during the subsequent implementation of a foundation underpinning on the same site.The results have allowed to evaluate the limitations of each method and advantages of their combination.In conclusion, the application of geophysical prospecting techniques complementary to mechanical borings has contributed to a better geotechnical characterization of the ground, improving the planning and estimation of building project costs.

Downloads

Download data is not yet available.

References

(1) Documento Básico DB-SE-C Seguridad Estructural Cimientos, Código Técnico de la Edificación. pp. 13 y 110-111, Ministerio de la Vivienda, Gobierno de España, 2006.

(2) Schrott, L., Sass, O. (2008). Application of field geophysics in geomorphology: Advances and limitations exemplified by case Studies. Geomorphology, 93(1-2): 55–73. http://dx.doi.org/10.1016/j.geomorph.2006.12.024

(3) Aki, K., Christofferson, A., Husebye, E.S. (1977). Determination of the three dimensional seismic structure of the lithosphere. Journal of Geophysical.Research, 82(2): 277-296. http://dx.doi.org/10.1029/JB082i002p00277

(4) Clayton, R.W., Comer, R.P. (1983). A tomographic analysis of mantle heterogeneities from body wave travel times. EOS, Transactions, American Geophysical Union, 62:776.

(5) Orellana, E., Higueras, M., Merchán, F. (1995). La interpretación automática (por medio de ordenador) en la prospección geofísica. Casos de refracción sísmica y de SEV. Física de la Tierra, 7: 33-51.

(6) Louie J. (2001). Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America, 91(2): 347–364, http://dx.doi.org/10.1785/0120000098

(7) Coccia, S., del Gaudio, V., Venisti, N., Wasowski, J. (2010). Application of Refraction Microtremor (ReMi) technique for determination of 1-D shear wave velocity in a landslide area. Journal of Applied Geophysics, 71(2-3): 71–89. http://dx.doi.org/10.1016/j.jappgeo.2010.05.001

(8) Pancha, A., Anderson, J.G., Louie, J.N., Pullammanappallil, S.K. (2008). Measurement of shallow shear wave velocities at a rock site using the ReMi technique. Soil Dynamics and Earthquake Engineering, 28(7): 522–535. http://dx.doi.org/10.1016/j.soildyn.2007.08.005

(9) Socco, L., Foti, S., Boiero, D. (2010). Surface-wave analysis for building near-surface velocity models - Established approaches and new perspectives. Geophysics, 75(5): 75A83-75A102.

(10) Raines, M.G., Gunn, D.A., Morgan, D.J.R., Williams, G., Williams, J.D.O., Caunt, S. (2011). Refraction microtremor (ReMi) to determine the shear-wave velocity structure of the near surface and its application to aid detection of a backfilled mineshaft. Quarterly Journal of Engineering Geology and Hydrogeology, 44(2): 211-220. http://dx.doi.org/10.1144/1470-9236/09-046

(11) ASTM D4428 / D4428M-07, Standard Test Methods for Crosshole Seismic Testing, American Society for Testing and Material, EEUU, 2007.

(12) Moreno, J. (2010). Patologías en edificación: nuevas tecnologías geotécnicas y geofísicas para su auscultación. Tierra y tecnología, 37: 63-73.

(13) Schuster, G.T., Quintus-Bosz, A. (1993). Wavepath eikonal traveltime inversion: Theory. Geophysics, 58(9): 1314-1323. http://dx.doi.org/10.1190/1.1443514

(14) REAL DECRETO 997/2002, de 27 de septiembre, por el que se aprueba la norma de construcción sismorresistente: parte general y edificación (NCSR-02). Ministerio de Fomento, Gobierno de España, 2002.

(15) UNE-EN ISO 22476-3:2006, Investigación y ensayos geotécnicos. Ensayos de campo. Parte 3: Ensayo de penetración estándar (ISO 22476-3:2005), Asociación Espa-ola de Normalización y Certificación AENOR, Espa-a, 2006.

(16) ASTM D1587-08, Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes, American Society for Testing and Material, EEUU, 2008.

Downloads

Published

2013-06-30

How to Cite

Pérez, C., Mateo, M., & Maciá, A. (2013). Application of seismic refraction tomography and microtremor analysis as geophysical prospecting techniques in geotechnical studies in building. Informes De La Construcción, 65(530), 203–212. https://doi.org/10.3989/ic.11.112

Issue

Section

Research Articles