Correlación entre el índice RMR de Bieniawski y el índice Q de Barton en formaciones sedimentarias de grano fino

Autores/as

DOI:

https://doi.org/10.3989/id54459

Palabras clave:

índice RMR, índice Q, clasificación del macizo rocoso, excavación de túneles, geomecánica, roca sedimentaria

Resumen


Desde el siglo XX se han propuesto varios sistemas de clasificación del macizo rocoso. Entre ellos destacan el sistema RMR de Bieniawski y el sistema Q de Barton, que son las clasificaciones más empleadas en todo el mundo. Se han propuesto numerosas relaciones entre ambos índices, que normalmente tienen gran dispersión de datos. Sin embargo, se ha observado que las correlaciones establecidas para litologías específicas son más precisas. El objetivo de este artículo es proponer una correlación entre el índice RMR y Q para formaciones sedimentarias de grano fino, habituales en la zona de Bilbao (España), mediante los datos recopilados in situ durante la excavación del túnel Etxebarri-Casco Viejo de la línea 3 del Ferrocarril Metropolitano de Bilbao. La ecuación obtenida muestra un alto grado de correlación y se ha propuesto una relación única entre los dos sistemas de clasificación, que no depende de la variable independiente escogida.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Bieniawski, Z. T. (1989). Engineering rock mass classifications. New York: John Wiley & Sons.

(2) Potvin, Y., Dight, P. M., Wesseloo, J. (2012). Some pitfalls and misuses of rock mass classification systems for mine design. Journal of the Southern African Institute of Mining and Metallurgy, 112(8): 1-6.

(3) Palmstrom, A. (1996). Characterizing rock masses by the RMi for use in practical rock engineering. Part 1: The development of the Rock Mass index (RMi). Tunnelling and Undergroung Space Technology, 11(2): 175-188 https://doi.org/10.1016/0886-7798(96)00015-6

(4) Hoek, E., Brown, E. T. (1980). Underground Excavations in Rock. London: The Institution of Mining and Metallurgy.

(5) Protodyakonov, M. M. (1907). Rock pressure on mine support (theory of mine support), pp. 23-45. Yekaterinoslav: Tipografiya Gubernskogo Zemstva.

(6) Terzaghi, K. (1946). Rock defects and loads on tunnel supports. En Proctor, R. V., White, T. L. (Eds.), Rock tunnelling with steel supports (pp. 17-99). Youngstown, Ohio: Commercial Shearing and Stamping Company.

(7) Lauffer, H. (1958). Classification for tunnel construction. Geologie und Bauwesen, 24(1): 46-51.

(8) Deere, D. U., Hendron, A. J., Patton, F. D., Cording, E. J. (1967). Design of surface and near-surface construction in rock. En Fairhurst (Ed.), Failure and breakage of rock, proceedings 8th US symposium on rock mechanics (pp. 237-302). New York: Society of Mining Engineers, AIME. PMCid:PMC1842238

(9) Deere, D. U. (1968). Geological Considerations. En Stagg, K., Zienkiewicz, W. (Eds.), Rock mechanics in engineering practice (pp. 1-20). New York: Wiley.

(10) Wickham, G. E., Tiedemann, H. R., Skinner, E. H. (1972, 5 de junio). Support determinations based on geologic predictions. En North American rapid excavation and tunnelling conference (pp. 43-64). Chicago: Society of Mining Engineers, AIME.

(11) Bieniawski, Z. T. (1973). Engineering classification of jointed rock masses. South African Institute of Civil Engineers, 15(12): 333-343.

(12) Barton, N., Lien, R., Lunde, J. (1974). Engineering classification of rock masses for the design of rock support. Rock Mechanics. 6(4): 189-236. https://doi.org/10.1007/BF01239496

(13) Barton, N., Grimstad, E. (1994). Rock mass conditions dictate choice between NMT and NATM. Tunnels & Tunnelling International, 26(10): 39-42.

(14) Hoek, E., Kasier, P. K., Bawden, W. F. (1995). Support of Underground Excavations in Hard Rock. Rotterdam: A. A. Balkema.

(15) Marinos, V., Marinos, P., Hoek, E. (2005). The geological strength índex: applications and limitations. Bulletin of Engineering Geology and the Environment, 64(1): 55-65. https://doi.org/10.1007/s10064-004-0270-5

(16) Palmstrom, A. (1996). Characterizing rock masses by the RMi for use in practical rock engineering, Part 2: Some practical applications of the Rock Mass index (RMi). Tunnelling and Undergroung Space Technology, 11(3): 287-303. https://doi.org/10.1016/0886-7798(96)00028-4

(17) Sheorey, P. R. (1993). Experience with the application of modern rock classifications in coal mine roadways. En Hudson, J. A. (Ed.), Comprehensive Rock Engineering, Principles, Practice and Projects, 5 (pp. 411-431). Oxford: Pergamon. https://doi.org/10.1016/B978-0-08-042068-4.50024-7

(18) Goel, R. K., Jethwa, J. L., Paithankar, A. G. (1996). Correlation between Barton's Q and Bieniawski's RMR—A new approach. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 33(2): 179-181. https://doi.org/10.1016/0148-9062(95)00057-7

(19) Kumar, N., Samadhiya, N. K., Anbalagan, R. (2004). Application of rock mass classification systems for tunnelling in Himalaya, India. International Journal of Rock Mechanics and Mining Sciences, 41(1): 852-857. https://doi.org/10.1016/j.ijrmms.2004.03.147

(20) Tzamos, S. Sofianos, A. I. (2007). A correlation of four rock mass classification systems through their fabric indices. International Journal of Rock Mechanics and Mining Sciences, 44(4): 477-495. https://doi.org/10.1016/j.ijrmms.2006.08.003

(21) Aydan, Ö., Ulusay, R., Tokashiki, N. (2014). A new rock mass quality rating system: Rock Mass Quality Rating (RMQR) and its applications to the estimation of geomechanical characteristics of rock masses. Rock Mechanics and Rock Engineering, 47(4): 1255-1276. https://doi.org/10.1007/s00603-013-0462-z

(22) Jing, L., Hudson, J. A. (2002). Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences, 39(4): 409-427. https://doi.org/10.1016/S1365-1609(02)00065-5

(23) Palmstron, A., Broch, E. (2006). Use and misuse of rock mass classification systems with particular reference to the Q-system. Tunnelling and Underground Space Technology, 21(6): 575-593. https://doi.org/10.1016/j.tust.2005.10.005

(24) Goel, R. K., Jethwa, J. L., Paithankar, A. G. (1995). Indian experiences with Q and RMR systems. Tunnelling and Underground Space Technology, 10(1): 97-109. https://doi.org/10.1016/0886-7798(94)00069-W

(25) Kaiser, P. K., MacKay, C., Gale, A. D. (1986). Evaluation of rock classification at B. C. Rail Tumbler Ridge Tunnels. Rock Mechanics and Rock Engineering, 19(4): 205-234. https://doi.org/10.1007/BF01039996

(26) Palmström, A. (2009). Combining the RMR, Q, and RMi classification systems. Tunnelling and Underground Space Technology, 24(4): 491-492. https://doi.org/10.1016/j.tust.2008.12.002

(27) Barton, N. (2002). Some new Q-value correlations to assist in site characterisation and tunnel design. International Journal of Rock Mechanics and Mining Science, 39(2): 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4

(28) Zhang, L. (2016). Determination and applications of Rock Quality Designation (RQD). Journal of Rock Mechanics and Geotechnical Engineering, 8(3): 389-397. https://doi.org/10.1016/j.jrmge.2015.11.008

(29) Russo, G. (2009). A new rational method for calculating the GSI. Tunnelling and Underground Space Technology, 24(1): 103-111. https://doi.org/10.1016/j.tust.2008.03.002

(30) Pantelidis, L. (2009). Rock slope stability assessment through rock mass classification systems. International Journal of Rock Mechanics and Mining Sciences, 46(2): 315-325. https://doi.org/10.1016/j.ijrmms.2008.06.003

(31) Ribacchi, R., Lembo-Fazio, A. (2005). Influence of rock mass parameters on the performance of a TBM in a gneissic formation (Varzo Tunnel). Rock Mechanics and Rock Engineering, 38(2): 105-127. https://doi.org/10.1007/s00603-004-0032-5

(32) Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A., Tavakoli, H. R. (2009). TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel. Rock Mechanics and Rock Engineering, 43(4): 427-445. https://doi.org/10.1007/s00603-009-0060-2

(33) Hamidi, J. K., Shahriar, K., Rezai, B., Rostami, J. (2010). Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system. Tunnelling and Underground Space Technology, 25(4): 333-345. https://doi.org/10.1016/j.tust.2010.01.008

(34) Innaurato, N., Mancini, A., Rondena, E., Zaninetti, A. (1991, 16 de septiembre). Forecasting and effective TBM performances in a rapid excavation of a tunnel in Italy. En 7th International Congress ISRM (pp. 1009-1014). Aachen.

(35) Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A. (2009). Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: a case history of Nowsood water conveyance tunnel. Geomechanics and Geoengineering: An International Journal, 4(4): 287-297. https://doi.org/10.1080/17486020903174303

(36) Barton, N. (2000). TBM Tunnelling in Jointed and Faulted Rock. Rotterdam: Balkema.

(37) Ranasooriya, J., Nikraz, H. (2009). Reliability of the linear correlation of Rock Mass Rating (RMR) and Tunnelling Quality Index (Q). Australian Geomechanics, 44(2): 47-54.

(38) Castro-Fresno, D., Diego-Carrera, R., Ballester-Mu-oz, F., Alvarez-Garcia, J. J. (2010). Correlation between Bieniawski's RMR and Barton's Q index in low-quality soils. Revista de la Construcción, 9(1): 107-119. https://doi.org/10.4067/S0718-915X2010000100012

(39) Gallo-Laya, J., Pérez-Acebo, H., García-Bragado, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Bilbao: Universidad del País Vasco UPV/EHU.

(40) Bieniawski, Z. T. (1976). Rock mass classification in rock engineering. En Bieniawski, Z. T. (Ed.), Proceedings of the Symposium on Exploration for Rock Engineering (pp. 97-106). Johannesburg: A. A. Balkema.

(41) Bieniawski, Z. T. (1974, 1 de septiembre). Geomechanics classification of rock masses and its application in tunneling. En 3rd International Congress on Rock Mechanics (pp. 27-32). Denver: International Society for Rock Mechanics (ISRM).

(42) Bieniawski, Z. T. (1975, 21 de julio). Case Studies: Prediction of rock mass behaviour by the geomechanics classification. En 2nd Australia-New Zealand Conference on Geomechanics (pp. 36-41). Brisbane: Institution of Engineers, Australia.

(43) Bieniawski, Z. T. (1979, 2 de septiembre). The geomechanics classification in rock engineering applications. En 4th ISRM Congress (pp. 41-48). Montreux (Switzerland): International Society for Rock Mechanics (ISRM).

(44) Celada, B., Tardáguila, I., Varona, P., Rodríguez, A., Bieniawski, Z. T. (2014, 9 de mayo). Innovating tunnel design by an improved experience-based RMR system. En World Tunnel Congress. Iguassu Falls, Brazil: ITA-AITES.

(45) Barton, N. (1976). Recent experience with the Q System in tunnel support design. En Bieniawski, Z. T. (Ed.), Proceedings of the Symposium on Exploration for Rock Engineering (pp. 107-115). Johannesburg: A. A. Balkema.

(46) Barton, N., Lien, R., Lunde, J. (1977). Estimation of support requirements for underground excavations. En Fairhurst, C., Crouch, S. L. (Eds.), 16th Symposium on Design Methods in Rock Mechanics (pp. 163-177). New York: American Society of Civil Engineers.

(47) Barton, N., Loset, R., Lien, R., Lunde, J. (1980). Application of Q-system in design decisions concerning dimensions and appropriate support for underground installations. En Begman, M. (Ed.), Subsurface Space, 2 (pp. 553-561). New York: Pergamon.

(48) Grimstad, E., Barton, N. (1993). Updating the Q-system for NMT. En Jompen, Opsahl, Berg (Eds.), Proceedings of the International Symposium on Sprayed Concrete – Modern use of wet mix sprayed concrete for underground support (pp. 46-66). Oslo: Norwegian Concrete Association.

(49) Bieniawski, Z. T., Barton, N. (2009). RMR and Q: Setting the record straight. Tunnels and Tunnelling International, February 2009: 26-29.

(50) Jethwa, J. L., Dube, A. K., Singh, B., Mithal, R. S. (1982). Evaluation of methods for tunnel support design in squeezing rock conditions. En 4th International Congress of International, 5 (pp. 125-134). Delhi: Association of Engineering Geology.

(51) Rutledge, J. C., Preston, R. L. (1978, 29 de mayo). Experience with engineering classifications of rock. En International Tunnelling Symposium (pp. A3.1-A3.7). Tokyo, Japan Tunnelling Association.

(52) Cameron-Clarke, I. S., Budavari, S. (1981). Correlation of rock mass classification parameters obtained from borecore and in-situ observations. Engineering Geology, 17(1-2): 19-53. https://doi.org/10.1016/0013-7952(81)90019-3

(53) Moreno Tallon, E. (1982, 7 de junio). Comparison and application of geomechanics classification schemes in tunnel construction. En Tunnelling 82, 3rd International Symposium (pp. 241-246). Brighton: The Institute of Mining and Metalurgy.

(54) Celada Tamames, B. (1983). Fourteen years of experience on rock bolting in Spain. En Stephansson, O. (Ed.), Proceedings of the International Symposium on Rock Bolting, (pp. 295-311). Rotterdam: A.A. Bankelma.

(55) Abad, J., Celada, B., Chacon, E., Gutierrez, V., Hidalgo, E. (1983, 10 de mayo). Application of geomechanical classification to predict the convergence of coal mine galleries and to design their supports. En 5th International Congress of Rock Mechanics (pp. 15-19). Melbourne: International Society for Rock Mechanics (ISRM).

(56) Sunwoo, C., Hwang, S. (2001, 11 de septiembre). Correlation of rock mass classification methods in Korean rock mass. En 2nd Asian Rock Mechanics Symposium (pp. 631-633). Beijing: A. A. Balkema.

(57) Alkorta-Lertxundi, A., Bernardo-Sánchez, A. (2010, 18 de mayo). Comparación de la aplicación de las clasificaciones geotécnicas RMR, Q y GSI en la ejecución de los túneles de la Variante Sur Metropolitana de Bilbao. En Jornadas de Ingeniería Geológica y Geotecnia de Túneles. Madrid: Ilustre Colegio Oficial de Geólogos.

(58) Lertxundi, A. A., Bernal, R. M., Ruiz, G. M., Sánchez-Rodríguez, S. (2014). Geotechnical characterization and correlations obtained in Flysch units. En Alejano, R., Perucho, A., Olalla, C., Jiménez, R. (Eds.), Rock Engineering and Rock Mechanics: Structures in and on Rock Masses (pp. 439-444). London: Taylor & Francis Group. https://doi.org/10.1201/b16955-73

(59) Sayeed, I., Khanna, R. (2015, 27 de octubre). Empirical correlation between RMR and Q systems of rock mass classification derived from Lesser Himalayan and Central crystalline rocks. En International Conference on "Engineering Geology in New Millenium". New Delhi: Journal Engineering of Geology.

(60) Madinaveitia, J. R. (1999, 31 de mayo). Station cavern: The heart of the Bilbao Metro. En Challenges for the 21st Century: Proceedings of the World Tunnel Congress' 99 (pp. 261-265). Oslo: Taylor & Francis.

(61) IMEBISA (1998). Metro Bilbao – Ingeniería y Arquitectura / Ingeniearitzako eta Arkitekturak. Bilbao: IMEBISA.

(62) Gullón, A. A., Pacios, P. (2010, 14 de mayo). Experience in Construction in Strong Rock with Roadheader in the Ariz- Basauri section of the Bilbao Metro. En ITA-AITES World Tunnel Congress, WTC 2010. Vancouver: International Tunnelling Association. PMCid:PMC2958469

(63) Pérez-Acebo, H., Marcano-Ceballos, R. (2015, 17 de junio). Excavación del túnel del tramo Ariz-Basauri del Metro de Bilbao en terrenos de caliza altamente karstificada y en zonas de rellenos coluviales sin presencia de roca bajo zona densamente poblada. En Spain Minergy, I Congreso Internacional de Minería, Energía y Metalurgia (pp. 207-216). Gijón: Universidad de Oviedo.

(64) Rabcewicz, L. V. (1964). The new Austrian tunnelling method. Water Power, 16(11): 453-457.

(65) Ferrero, P. P., Mota, E. (2008). Excavación de túneles con rozadora: aplicación en el tramo Aritz-Basauri en la línea 2 del Metro de Bilbao. Ingeopres, 176: 44-54.

Publicado

2017-09-30

Cómo citar

Fernández-Gutiérrez, J. D., Pérez-Acebo, H., & Mulone-Andere, D. (2017). Correlación entre el índice RMR de Bieniawski y el índice Q de Barton en formaciones sedimentarias de grano fino. Informes De La Construcción, 69(547), e205. https://doi.org/10.3989/id54459

Número

Sección

Artículos