Study, measurement and reduction of the radon concentration in the University School of Technical Architecture of the University of Coruña

Authors

DOI:

https://doi.org/10.3989/ic.16.101

Keywords:

radon, ionization chamber, trace detectors, mechanical ventilation, reduction

Abstract


A study of radon concentration has been carried out at the University of A Coruña’s Technical Architecture School. For that purpose, soil and construction materials, as well as building location have been analyzed. After that, measurements have been performed in order to find out radon concentrations. Two techniques have been used to make that enquiry for both short term and long term measurements: for short term, measurements were made using an on-site ionization chamber detector, while, for long term, trace detectors have been employed. Due to the results, and according with the Spanish Law (Spanish Official Bulletin – Boletín Oficial del Estado, of December 21, 2011, IS-33 Instruction), corrective works have taken place (cracks sealing, installation of a forced ventilation system) in order to diminish the high radon concentrations. After works, new measurements proved that radon concentration values lowered about 50 % and 90 %.

Downloads

Download data is not yet available.

References

(1) Kourtidis, K., Georgoulias, A. K., Vlahopolou, M., Tsirliganis, N., Kastelis, N., Ouzounis, K., Kazakis, N. (2015). Radon and radioactivity at a town overlying Uranium ores in northern Greece. J. Environ. Radioact., 150: 220-27. https://doi.org/10.1016/j.jenvrad.2015.08.001 PMid:26372739

(2) Liu, B., Peng, T., Sun, J., Yue, H. (2017). Release behavior of uranium in uranium mill tailings under environmental conditions. J. Environ. Radioact., 171: 160-168. https://doi.org/10.1016/j.jenvrad.2017.02.016 PMid:28254525

(3) Cortina, D., Durán, I., Llerena, J. J. (2008). Measurements of indoor radon concentrations in the Santiago de Compostela area. J. Environ. Radioact., 99: 1583-1588. https://doi.org/10.1016/j.jenvrad.2007.12.004 PMid:18243445

(4) Lamonaca, F., Nastro, V., Nastro, A., Grimaldi, G. (2014). Monitoring of indoor radon pollution. Meas. J. Int. Meas. Confed., 47: 228-233. https://doi.org/10.1016/j.measurement.2013.08.058

(5) Veleva, V., Valkov, N., Batchvarova, E., Kolarova, M. (2010). Variation of short-lived beta radionuclide (radon progeny) concentrations and the mixing processes in the atmospheric boundary layer. J. Environ. Radioact., 101(7): 538-543. https://doi.org/10.1016/j.jenvrad.2009.08.008 PMid:19733941

(6) WHO (2015). Radon and health. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs291/en/ [Accessed: 11-Mar-2015].

(7) National Academy of Sciences (1999). Health Effects of Exposure to Radon: BEIR VI, pp. 1-4. Washington, D.C.: National Academy Press.

(8) I. E. D. US EPA, OAR, Radon: Assessment of Risks from Radon in Homes. [Online]. Available: http://www.epa.gov/radon/risk_assessment.html. [Accessed: 11-Mar-2015].

(9) Ministerio de la Presidencia (2001). Reglamento sobre Protección Sanitaria contra Radiaciones Ionizantes. Boletín Oficial del Estado, n.º 178, pp. 27284-27393. Espa-a.

(10) Ministerio de la Presidencia (2010). Reglamento sobre protección sanitaria contra radiaciones ionizantes, aprobado por Real Decreto 783/2001, de 6 de julio. Boletín Oficial del Estado, n.º 279, pp. 96395-96398. Espa-a.

(11) Consejo de Seguridad Nuclear (2011). Instrucción IS-33, de 21 de diciembre de 2011, del Consejo de Seguridad Nuclear, sobre criterios radiológicos para la protección frente a la exposición a la radiación natural. Boletín Oficial del Estado, n.º 22, pp. 6833-6838. Espa-a. PMCid:PMC3084133

(12) Consejo de la Unión Europea (2014). Directiva 2013/59/EURATOM del Consejo de 5 de diciembre de 2013 por la que se establecen normas de seguridad básicas para la protección contra los peligros derivados de la exposición a radiaciones ionizantes. Diario Oficial de la Unión Europea, n.º L13, pp. 1-73.

(13) Mapas geológicos de Espa-a 21 5-4 (La Coru-a) y 45 5-5 (Betanzos). Instituto Geológico y Minero de Espa-a (IGME), 1975.

(14) Rodríguez Blanco, M. T., Taboada Castro, M. L., Taboada Castro, M. M. (2003). Caracterización Hidroquímica de un peque-o manantial del macizo granítico de A Coru-a (NW Espa-a). Cadernos Lab. Xeolóxico de Laxe, 8: 285-300.

(15) Alonso Pereira, J. R., Río Vázquez, A. S. (2013). Las Escuelas de Arquitectura de La Coru-a. Anais do X Seminário do.co.mo.mo_Brasil.

(16) Mentes, G., Eper-Pápai, I. Investigation of temperature and barometric pressure variation effects on radon concentration in the Sopronbanfalva Geodynamic Observatory, Hungary. Journal of Environmetal Radioactivity, 149: 64-72.

(17) Saphymo GmbH (2009). User manual Portable Radon Monitor "AlphaGUARD". Frankfurt, Germany.

(18) GT Analytic (2014). Kodalpha Radon-Dosimeters and LR-115 SSNTD Specifications. France.

(19) Dwaikat, N., Safarini, G., El-Hasan, M., Lida, T. (2007). CR-39 detector compared with Kodalpha film type (LR115) in terms of radon concentration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 574: 289-291. https://doi.org/10.1016/j.nima.2007.01.168

(20) United States Environmental Protection Agency (2014). Protocols for Radon and Radon Decay Product Measurements in Homes (MAH 2014). Air and radiation.

(21) Piedecausa, B. (2013). Medidas de radón en espacios de trabajo subterráneos del Campus de la Universidad de Alicante. Informes de la Construcción, 65(531): 301-310. https://doi.org/10.3989/ic.12.093

(22) Korhonen, P., Kokotti, H., Kalliokoski, P. (2000). Survey and mitigation of occupational exposure of radon in workplaces. Build. Environ., 35: 555-562. https://doi.org/10.1016/S0360-1323(99)00048-7

(23) Scivyer, C. R. (2011). Radon in the workplace: A Guide for Building Owners and Managers. Building Research Establishment, BRE Trust.

(24) Welsh, P. (1997). Trials of radon remedies in a UK test house: An introduction. Environ. Int., 22(Suppl. 1): 1059-1067. https://doi.org/10.1016/S0160-4120(96)00219-X

(25) Maringer, F. J., Akis, M. G., Kaineder, H., Kindl, P., Kralik, C., Lettner, H., Lueginger, S., Nadschläger, E., Ringer, W., Rolle, R., Schönhofer, F., Sperker, S., Stadtmann, H., Steger, F., Steinhäusler, F., Tschurlovits, M., Winkler, R. (2001, May). Results and conclusions of the Austrian radon mitigation project 'SARAH'. Sci. Total Environ., 272(1-3): 159-67. https://doi.org/10.1016/S0048-9697(01)00687-8

(26) Colorado-Aranguren, D., Domínguez-de Posada, J., Rodríguez-Rodríguez, A. (2014). Disminución de los niveles de radón en viviendas. Comparación de soluciones constructivas. Tecnología y desarrollo, 12. Escuela Politécnica Superior, Universidad Alfonso X el Sabio.

(27) Frutos, B., Olaya, M., Esteban, J. L. (2011). Sistemas de extracción como técnicas constructivas para evitar la entrada de gas radón en las viviendas. Informes de la Construcción, 63(521): 23-36. https://doi.org/10.3989/ic.09.056

Published

2017-09-30

How to Cite

Otero-Pazos, A., Fernández-Ibáñez, I., Piñón-Pazos, A. J., Calvo-Rolle, J. L., & Giz-Novo, J. (2017). Study, measurement and reduction of the radon concentration in the University School of Technical Architecture of the University of Coruña. Informes De La Construcción, 69(547), e217. https://doi.org/10.3989/ic.16.101

Issue

Section

Research Articles