Towards port sustainability through probabilistic models: Bayesian networks

Authors

DOI:

https://doi.org/10.3989/id.54678

Keywords:

port variables, sustainability, port, port management, Bayesian networks

Abstract


It is necessary that a manager of an infrastructure knows relations between variables. Using Bayesian networks, variables can be classified, predicted and diagnosed, being able to estimate posterior probability of the unknown ones based on known ones. The proposed methodology has generated a database with port variables, which have been classified as economic, social, environmental and institutional, as addressed in of smart ports studies made in all Spanish Port System. Network has been developed using an acyclic directed graph, which have let us know relationships in terms of parents and sons. In probabilistic terms, it can be concluded from the constructed network that the most decisive variables for port sustainability are those that are part of the institutional dimension. It has been concluded that Bayesian networks allow modeling uncertainty probabilistically even when the number of variables is high as it occurs in port planning and exploitation.

Downloads

Download data is not yet available.

References

(1) World Commision on Environment and Development (WCED) (1987). Our Common Future (Brundtlland Report), United Nations

(2) Madero Gómez, S.M.; Zarate Solís, I.A. (2017). La sostenibilidad desde una perspectiva de las áreas de negocios. Cuadernos de Administración, vol. 32, no 56, p. 7-19 https://doi.org/10.25100/cdea.v32i56.4277

(3) Doerr, O. (2011). Políticas portuarias sostenibles. Boletín FAL. CEPAL. Edición nº 299, número 7 de 2011

(4) Global Reporting Initiative (2000). Guía para la elaboración de Memorias de Sostenibilidad. Versión 3.1. GRI

(5) Serrano, O. (2015). Operativa portuaria y sostenibilidad. CONAMA LOCAL 2015, 7 octubre de 2015. Málaga

(6) Sánchez, R.J.; Jauimurzono, A.; Willmsmeier, G.; Pérez Salas, G.; Doerr, O.; Pinto, F. (2015). Transporte marítimo y Puertos. Desafío y oportunidades en busca de un desarrollo sostenible de América Latina y El Caribe. CEPAL. Serie Recursos Naturales e Infraestructura.

(7) Crespo Soler, C.; Giner Fillol, A.; Morales Baraza, J.A.; Ponte Tubal, N; Ripoll Feliu; V.M. (2007). La información de sostenibilidad en el marco de las cuentas anuales: análisis aplicado al caso de la Autoridad Portuaria de Valencia. Revista do Contabilidado de Maestrado em Ciências Contábeis da UERJ, Rio Janeiro, v-12, n.3, p-11 set./dez, 2007

(8) Grupo De Trabajo 23 (2004). La sostenibilidad en los puertos. CONAMA VII Cumbre del desarrollo sostenible, 24 de noviembre de 2004

(9) Crespo Soler, C.; Ripoll Feliu; V.M., Crespo Trujillo, A.M.; Giner Fillol, A. (2005). La sostenibilidad ambiental en el sistema portuario de titularidad estatal. XIII Congreso AECA. Armonización y Gobierno de la Diversidad. 22-24 Septiembre 2005

(10) González, F.; Guerra, A.; Martín, F.; Nóvoa, J.J.; Otero, C. Y Penela, J. (2010). Medición de la sostenibilidad en el sistema portuario Espa-ol: propuesta metodológica a través de indicadores sintéticos de desarrollo sostenible. XII Reunión de economía mundial, mayo de 2010. Santiago de Compostela

(11) Autoridad Portuaria De A Coru-a, Autoridad Portuaria De Valencia, Organismo Público Puertos Del Estado (2008). Guía para la elaboración de memorias de sostenibilidad en el sistema portuario espa-ol. FEPORTS

(12) Puertos Del Estado (2011). Memoria de sostenibilidad del sistema portuario de interés general.

(13) Friedman, N., & Goldszmidt, M. (1996). Building classifiers using bayesian networks. Proceedings of the National Conference on Artificial Intelligence, Menlo Park, Ca: AAAI Press

(14) Jara-Díaz, S., Martínez-Budría, E., Cortes, C., & Vargas, A. (1997). Marginal costs and scale economies in Spanish ports. 25th European Transport Forum, Proceedings Seminar L, PTRC, London, pp. 137-147.

(15) Tebaldi, C., & West, M. (1998). Bayesian inference on network traffic using link count data. Journal of the American Statistical Association, 93(442), 557-573. https://doi.org/10.1080/01621459.1998.10473707

(16) Cain, J. (2001). Planning improvements in natural resource management. Guidelines for using bayesian networks to support the planning and management of development programmes in the water sector and beyond. Wallingford, Oxon: CEH Wallingford.

(17) Conati, C., Gertner, A. Y Vanlehn, K. (2002). Using bayesian networks to manage uncertainty in student modeling. User Modeling and User-Adapted Interaction, 12, 371-417. https://doi.org/10.1023/A:1021258506583

(18) Bromley, J., Jackson, N. A., Clymer, O. J., Giacomello, A. M., & Jensen, F. V. (2005). The use of hugin® to develop bayesian networks as an aid to integrated water resource planning* 1. Environmental Modelling & Software, 20(2), 231-242. https://doi.org/10.1016/j.envsoft.2003.12.021

(19) Sun, S., Zhang, C., & Yu, G. (2006). A bayesian network approach to traffic flow forecasting. IEEE Transactions on Intelligent Transportation Systems, 7(1), 124-132. doi: 10.1109/TITS.2006.869623 https://doi.org/10.1109/TITS.2006.869623

(20) Zheng, W., Lee, D. H., & Shi, Q. (2006). Short-term freeway traffic flow prediction: Bayesian combined neural network approach. Journal of transportation engineering, 132(2), 114-121. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(114)

(21) Janssens, D., Wets, G., Brijs, T., Vanhoof, K., Arentze, T., & Timmermans, H. (2006). Integrating Bayesian networks and decision trees in a sequential rule-based transportation model. European Journal of operational research, 175(1), 16-34. https://doi.org/10.1016/j.ejor.2005.03.022

(22) Castillo, E., Menéndez, J. M., & Sánchez-Cambronero, S. (2008). Traffic estimation and optimal counting location without path enumeration using Bayesian networks. Computer-Aided Civil and Infrastructure Engineering, 23(3), 189-207. https://doi.org/10.1111/j.1467-8667.2008.00526.x

(23) Castillo, E., Menéndez, J. M., & Sánchez-Cambronero, S. (2008). Predicting traffic flow using Bayesian networks. Transportation Research Part B: Methodological, Vol. 42, No. 5; 482-509. https://doi.org/10.1016/j.trb.2007.10.003

(24) Trucco, P., Cagno, E., Ruggeri, F., & Grande, O. (2008). A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation. Reliability Engineering & System Safety, 93(6), 845-856. https://doi.org/10.1016/j.ress.2007.03.035

(25) Klemola, E., Kuronen, J., Kalli, J., Arola, T., Hanninen, M., Lehikoinen, A. & Tapaninen, U. (2009). A cross-disciplinary approach to minimising the risks of maritime transport in the Gulf of Finland. World Review of Intermodal Transportation Research, Vol. 2, No. 4, 343-363. https://doi.org/10.1504/WRITR.2009.026212

(26) Kaluza, P., Kölzsch, A., Gastner, M. T., & Blasius, B. (2010). The complex network of global cargo ship movements. Journal of the Royal Society Interface, rsif20090495. https://doi.org/10.1098/rsif.2009.0495 PMid:20086053 PMCid:PMC2880080

(27) Hofleitner, A., Herring, R., Abbeel, P., & Bayen, A. (2012). Learning the dynamics of arterial traffic from probe data using a dynamic Bayesian network. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1679-1693. https://doi.org/10.1109/TITS.2012.2200474

(28) Cancelas, N. G., Flores, F. S., & Orive, A. C. (2013). Modelo de eficiencia de las terminales de contenedores del sistema portuario espa-ol. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA. Rect@, Vol. 14; 49-67.

(29) Camarero, A., González-Cancelas, N., Soler, F., & López, I. (2013). Utilización de redes bayesianas como método de caracterización de parámetros físicos de las terminales de contenedores del sistema portuario espa-ol. Revista de Ingeniería, (39), 31-38.

(30) Flores, F. S., Cancelas, N. G., Orive, A. C., Gárate, J. L. A., & Monzón, M. D. C. P. (2014). Dise-o de un modelo de planificación de zonas de actividades logísticas mediante el empleo de redes bayesianas. Revista Ingeniería Industrial, 12(1).

(31) Li, K. X., Yin, J., Bang, H. S., Yang, Z., & Wang, J. (2014). Bayesian network with quantitative input for maritime risk analysis. Transportmetrica A: Transport Science, 10(2), 89-118. https://doi.org/10.1080/18128602.2012.675527

(32) Rodríguez García, T., González Cancelas, N., & Soler-Flores, F. (2015). Setting the Port Planning Parameters In Container Terminals through Bayesian Networks. PROMET-Traffic&Transportation, 27(5), 395-403. https://doi.org/10.7307/ptt.v27i5.1689

(33) García, T. R. (2016). Aplicaciones tecnológicas en la logística de transportes portuarios. Las terminales de contenedores. Revista Transporte y Territorio, (14), 5-26. http://revistascientificas.filo.uba.ar/index.php/rtt/article/view/2426

(34) Pearl J. (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.

(35) Almazán-Gárate, J.L.; Palomino-Monzón, M.C.; González-Cancelas, N.; Soler-Flores, F. (2014). Relationship between air pollution and natural gas with respect to maritime transport. Methodology based on Bayesian Networks. Global Virtual Conference. 7-11 April 2014. Transport and Logistics Section.

(36) Castillo, E.; Gutiérrez, J.M. and Hadi, A.S. (1997). Expert Systems and Probabilistic Network Models. Springer Verlag, New York https://doi.org/10.1007/978-1-4612-2270-5

(37) Duda, R.O.; Hart, P. E. and Stork, D.G. (2001). Pattern Classification. Wiley, New York

(38) Pearl, J. (1982). The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm and its Optimality. Communications of the ACM. 1982. Vol 25, no.8. https://doi.org/10.1145/358589.358616

(39) Cooper, G. and E. Herskovits (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–348. https://doi.org/10.1007/BF00994110

Published

2018-03-30

How to Cite

Molina, B., Gonzalez, N., & Soler, F. (2018). Towards port sustainability through probabilistic models: Bayesian networks. Informes De La Construcción, 70(549), e244. https://doi.org/10.3989/id.54678

Issue

Section

Research Articles