Mesh influence on the fire computer modeling in nuclear power plants

Authors

DOI:

https://doi.org/10.3989/id.55345

Keywords:

CFD fire models, enclosure fire dynamics, nuclear power plants, results accuracy

Abstract


Fire computer models allow to study real fire scenarios consequences. Its use in nuclear power plants has increased with the new regulations to apply risk informed performance-based methods for the analysis and design of fire safety solutions. The selection of the cell side factor is very important in these kinds of models. The mesh must establish a compromise between the geometry adjustment, the resolution of the equations and the computation times. This paper aims to study the impact of several cell sizes, using the fire computer model FDS, to evaluate the relative affectation in the final simulation results. In order to validate that, we have employed several scenarios of interest for nuclear power plants. Conclusions offer relevant data for users and show some cell sizes that can be selected to guarantee the quality of the simulations and reduce the results uncertainty.

Downloads

Download data is not yet available.

References

(1) Pryor, A.J. (1977) The Browns Ferry nuclear plant fire. Boston: SFPE, 77-2.

(2) NFPA 805: Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating Plants. National Fire Protection Association, 2015 Edition.

(3) Instrucción IS-30, sobre requisitos del programa de protección contra incendios en centrales nucleares. Consejo de Seguridad Nuclear, CSN, 2011.

(4) Rey, E., Aguayo, F., Peralta, M.ª E., Lama, J. R., Ávila, M.ª J. (2015). Integración de métodos escalares y vectoriales en la evaluación del riesgo de incendio en el ciclo de vida de una construcción. Informes de la Construcción, 67(539).

(5) McGrattan, K., y otros. (2016). Fire Dynamics Simulator (Version 6) Technical Reference Guide - Volume 1: Mathematical Model, NIST Special Publication 1018-1, Maryland, USA.

(6) United States Nuclear Regulatory Commission (U.S. NRC), Office of Nuclear Regulatory Research (RES), and Electric Power Research Institute (EPRI). (2007) NUREG-1824: Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications, Volume 1: Fire Main report. Washington, DC, and Palo Alto, CA, USA

(7) United States Nuclear Regulatory Commission (U.S. NRC). (1999) NUREG-1758: Evaluation of Fire Models for Nuclear Power Plant Applications: Cable Tray Fires. Washington DC.

(8) Capote, J.A., Alvear, D., Abreu, O.V., Lázaro, M., Espina, P. (2008). Influencia del Modelo de Turbulencia y del Refinamiento de la Discretización Espacial en la Exactitud de las Simulaciones Computacionales de Incendios, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 24(3): 227-245.

(9) Lázaro, M. (2008) Influencia de la Discretización Espacial en la Exactitud del Modelado de Fluidodinámica Computacional de Incendios, Tesis Doctoral, Universidad de Cantabria.

(10) Rein, G., Torero, J.L., y otros. (2009). Round-robin study of a priori modelling predictions of the Dalmarnock Fire Test One. Fire Safety Journal, 44(4): 590-602. https://doi.org/10.1016/j.firesaf.2008.12.008

(11) United States Nuclear Regulatory Commission (U.S. NRC), Office of Nuclear Regulatory Research (RES), and Electric Power Research Institute (EPRI). (2007) NUREG-1824: Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications, Volume 7: Fire Dynamics Simulator (FDS). Washington, DC, and Palo Alto, CA, USA.

(12) United States Nuclear Regulatory Commission (U.S. NRC), Office of Nuclear Regulatory Research (RES), and Electric Power Research Institute (EPRI). (2006). NUREG/CR-6931: Cable Response to Live Fire (CAROLFIRE), Sandia National Laboratories. Albuquerque, New México.

(13) McGrattan, K., y otros. (2016). Fire Dynamics Simulator (Version6) User Guide. NIST Special Publication 1019, Maryland, USA.

(14) United States Nuclear Regulatory Commission (U.S. NRC), Office of Nuclear Regulatory Research (RES), and Electric Power Research Institute (EPRI). (2012). NUREG-1934: Nuclear Power Plant Fire Modeling Analysis Guidelines (NPP FIRE MAG). Final Report, Washington, DC, and Palo Alto, CA, USA.

Published

2018-03-30

How to Cite

Lázaro, D., Lázaro, M., Peco, J., & Alvear, D. (2018). Mesh influence on the fire computer modeling in nuclear power plants. Informes De La Construcción, 70(549), e238. https://doi.org/10.3989/id.55345

Issue

Section

Research Articles