Análisis experimental del comportamiento mecánico de tubos de hormigón reforzado con fibras híbridas

Autores/as

DOI:

https://doi.org/10.3989/ic.85975

Palabras clave:

hormigón reforzado, fibras, híbridas, tubos

Resumen


El hormigón reforzado con dos o más tipos fibras se denomina hormigón reforzado con fibras híbridas (HRFH). En este trabajo se evalúa el desempeño mecánico del HRFH, de acero y de polipropileno, en su aplicación en tubos de 600 mm de diámetro. Para ello, se determinan experimentalmente, a través del ensayo de compresión diametral, la capacidad de carga y el modo de falla de tubos de HRFH (THRFH) elaborados con dos dosificaciones distintas de fibras. Los resultados son comparados con los obtenidos del ensayo de tubos de hormigón reforzado con fibras de acero (THRFA), también elaborados con dos dosificaciones distintas de fibras, y tubos de hormigón armado (THA) con armadura tradicional de barras de acero. Los THRFH con las dosis de fibras híbridas utilizadas alcanzaron una resistencia equivalente a los THA y, además, mostraron un modo de falla dúctil, sin desprendimiento de hormigón o aplastamiento diametral luego de la rotura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Zerbino, R.L. (2013). Uso de macrofibras sintéticas en hormigón. Hormigonar, 31, 12-18.

(2) Li, B., Chi, Y., Xu, L., Shi, Y., & Li, C. (2018). Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete. Construction and Building Materials, 191, 80-94. https://doi.org/10.1016/j.conbuildmat.2018.09.202

.

(3) Singh, A.K., Jain, A., Singh, D. (2013). Evaluation of mechanical properties for polypropylene and steel fibre reinforced concrete. International Journal of Engineering Research & Technology (IJERT), 2(4), 1507-1517.

(4) Prathipati, S. T., Koniki, S., Rao, C. B. K., & Kasagani, H. (2021). Assessment of fiber distribution characteristics in the hybrid fiber reinforced concrete-An experimental study. Materials Today: Proceedings, 38(5), 2541-2548, https://doi.org/10.1016/j.matpr.2020.07.556

(5) Guo, H., Jiang, L., Tao, J., Chen, Y., Zheng, Z., & Jia, B. (2021). Influence of a hybrid combination of steel and polypropylene fibers on concrete toughness. Construction and Building Materials, 275, 122132, https://doi.org/10.1016/j.conbuildmat.2020.122132

(6) Caggiano, A., Gambarelli, S., Martinelli, E., Nisticò, N., & Pepe, M. (2016). Experimental characterization of the post-cracking response in hybrid steel/polypropylene fiber-reinforced concrete. Construction and Building Materials, 125, 1035-1043, https://doi.org/10.1016/j.conbuildmat.2016.08.068

(7) Yao, W., Li, J., & Wu, K. (2003). Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement and concrete research, 33(1), 27-30, https://doi.org/10.1016/S0008-8846(02)00913-4

(8) Singh, N. K., & Rai, B. (2020). Assessment of synergetic effect on microscopic and mechanical properties of steel-polypropylene hybrid fiber reinforced concrete. Structural Concrete, 1-19, https://doi.org/10.1002/suco.201900166

(9) Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid short fiber reinforcement system in concrete: A review. Construction and building materials, 142, 280-294, https://doi.org/10.1016/j.conbuildmat.2017.03.059

(10) Singh, N.K., & Rai, B. (2019). A review of fiber synergy in hybrid fiber reinforced concrete. Journal of Applied Engineering Sciences, 8 (2), 41-50, https://doi.org/10.2478/jaes-2018-0017

(11) Al Rikabi, F.T., Sargand, S.M., Kurdziel, J., & Khoury, I. (2020). Performance of Thin-Wall Synthetic Fiber-Reinforced Concrete Pipes under Short and Long-Term Loading. Journal of Testing and Evaluation, 48(5), 3713-3733. https://doi.org/10.1520/JTE20180369

(12) Peyvandi, A., Soroushian, P., & Jahangirnejad, S. (2014). Structural Design Methodologies for Concrete Pipes with Steel and Synthetic Fiber Reinforcement. ACI Structural Journal, 111(1). https://doi.org/10.14359/51686432

(13) De la Fuente, A., de Figueiredo, A. D., Aguado, A., Molins, C., & Neto, P. J. C. (2011). Experimentation and numerical simulation of steel fibre reinforced concrete pipes. Materiales de Construcción, 61(302), 275-288. https://doi.org/10.3989/mc.2010.62810

(14) De Figueiredo, A. D., Aguado, A., Molins, C., & Chama Neto, P. J. (2012). Steel fiber reinforced concrete pipes: part 1: technological analysis of the mechanical behavior. Revista IBRACON de Estruturas e Materiais, 5(1), 1-11, https://doi.org/10.1590/S1983-41952012000100002

(15) Abolmaali, A., Mikhaylova, A., Wilson, A., & Lundy, J. (2012). Performance of Steel Fiber-Reinforced Concrete Pipes. Transportation research record, 2313(1), 168-177. https://doi.org/10.3141/2313-18

(16) ASTM C76-19b (2019). Standard Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe. ASTM International.

(17) Mohamed, N., Soliman, A.M., & Nehdi, M.L. (2015). Mechanical performance of full-scale precast steel fibre-reinforced concrete pipes. Engineering Structures, 84, 287-299. https://doi.org/10.1016/j.engstruct.2014.11.033

(18) De la Fuente, A., Escariz, R. C., de Figueiredo, A. D., & Aguado, A. (2013). Design of macro-synthetic fibre reinforced concrete pipes. Construction and Building Materials, 43, 523-532. https://doi.org/10.1016/j.conbuildmat.2013.02.036

(19) EN 1916:2002 (2008). Concrete pipes and fittings, unreinforced, steel fibre and reinforced. European Committee for Standardization.

(20) Wilson, A., & Abolmaali, A. (2014). Performance of synthetic fiber-reinforced concrete pipes. Journal of Pipeline Systems Engineering and Practice, 5(3), 04014002. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000166

(21) Park, Y., Abolmaali, A., Beakley, J., & Attiogbe, E. (2015). Thin-walled flexible concrete pipes with synthetic fibers and reduced traditional steel cage. Engineering Structures, 100, 731-741. https://doi.org/10.1016/j.engstruct.2015.06.049

(22) Lee, S., Park, Y., & Abolmaali, A. (2019). Investigation of Flexural Toughness for Steel and Synthetic Fiber Reinforced Concrete Pipes. Structures, 19, 203-211. https://doi.org/10.1016/j.istruc.2018.12.010

(23) ABNT NBR 8890 (2007). Tubo de concreto de seção circular, para águas pñuviais e esgotos sanitarios. Associação Brasileira de Normas Técnicas.

(24) ASTM C1765-16 (2016). Standard Specification for Steel Fiber Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe. ASTM International.

(25) ASTM C1818-16 (2016). Standard Specification for Synthetic Fiber Reinforced Concrete Culvert, Storm Drain and Sewer Pipe. ASTM International.

(26) Park, Y., Abolmaali, A., Mohammadagha, M., Lee, S. (2015). Structural performance of dry-cast rubberized concrete pipes with steel and synthetic fibers. Construction and Building Materials, 77, 218-226, https://doi.org/10.1016/j.conbuildmat.2014.12.061

(27) IRAM 11503 (1986). Caños de hormigón armado no pretensado. Destinados a la conducción de líquidos sin presión. Instituto Argentino de Normalización y Certificación.

(28) Chi, Y., Xu, L., & Zhang, Y. (2014). Experimental study on hybrid fiber-reinforced concrete subjected to uniaxial compression. Journal of Materials in Civil Engineering, 26(2): 211-218, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000764

(29) ASTM C497-19a (2019). Standard Test Methods for Concrete Pipe, Concrete Box Sections, Manhole Sections, or Tile. ASTM International.

(30) Deng, F., Ding, X., Chi, Y., Xu, L., Wang, L. (2018). The pull-out behavior of straight and hooked-end steel fiber from hybrid fiber reinforced cementitious composite: experimental study and analytical modelling. Composite Structures, 206, 693-712. https://doi.org/10.1016/j.compstruct.2018.08.066

(31) Christ, R., Pacheco, F., Ehrenbring, H., Quinino, U., Mancio, M., Muñoz, Y., & Tutikian, B. (2019). Study of mechanical behavior of ultra-high performance concrete (UHPC) reinforced with hybrid fibers and with reduced cement consumption. Revista Ingeniería de Construcción, 34(2), 159-168. https://doi.org/10.4067/S0718-50732019000200159

(32) Banthia N, Majdzadeh F, Wu J, Bindiganavile V. (2014). Fiber synergy in hybrid fiber reinforced concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composite, 48, 91-97. https://doi.org/10.1016/j.cemconcomp.2013.10.018

(33) Hsie, M., Tu, C., Song P. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering, 494(1-2), 153-157. https://doi.org/10.1016/j.msea.2008.05.037

(34) Das, S., Sobuz, M. H. R., Tam, V. W., Akid, A. S. M., Sutan, N. M., & Rahman, F. M. (2020). Effects of incorporating hybrid fibres on rheological and mechanical properties of fibre reinforced concrete. Construction and Building Materials, 262, 120561. https://doi.org/10.1016/j.conbuildmat.2020.120561

(35) Akcay, B., & Tasdemir, M.A. (2012). Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete. Construction and Building Materials, 28(1), 287-293. https://doi.org/10.1016/j.conbuildmat.2011.08.044

(36) Ferrado, F. L., Escalante, M. R., & Rougier, V. C. (2018). Simulation of the Three Edge Bearing Test: 3D Model for the Study of the Strength Capacity of SFRC Pipes. Mecánica Computacional, 36(6), 195-204.

Publicado

2022-03-09

Cómo citar

González, F. ., & Rougier, V. . (2022). Análisis experimental del comportamiento mecánico de tubos de hormigón reforzado con fibras híbridas. Informes De La Construcción, 74(565), e432. https://doi.org/10.3989/ic.85975

Número

Sección

Artículos