Niveles de óxidos de nitrógeno en construcción de túneles con el NATM durante el periodo de transición de la Directiva 2017/164/EU

Autores/as

DOI:

https://doi.org/10.3989/ic.82778

Palabras clave:

gases, NATM, NO, NO2

Resumen


La Directiva 2017/164/UE reducirá drásticamente los niveles de NO y NO2 en minería subterránea y construcción de túneles, existe preocupación con respecto a la viabilidad de los niveles propuestos y se estableció un período de transición que finaliza en agosto de 2023, está prevista una reevaluación de su aplicabilidad antes del final de este período. El estudio se realizó en un túnel de autopista de 2 km, sección de excavación de 102 m², método de excavación NATM, el túnel seleccionado es representativo del sistema de construcción de túneles en España. Este documento tiene como objetivo analizar los niveles de gas NO y NO2 durante la construcción del túnel y comparar los resultados con el nivel propuesto en la Directiva 2017/164/UE y los niveles vigentes. El informe concluye que se deben hacer esfuerzos para alcanzar los niveles de la Directiva en 2023. Se dan recomendaciones para alcanzar el nivel propuesto.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Burrell, G.A., Seibert, F.M. (1916). Gases found in coal mines. U.S. Government Printing Office.

(2) Indsci.com. (2020). Understanding cross sensitivities can help to keep workers safer. Retrieved from (12 August 2020): https://www.indsci.com/en/blog/understanding-cross-sensitivities-can-help-to-keep-workers-safer

(3) Crowcon Detection Instruments Ltd. (2020). Cross sensitivity of toxic sensors: Chris investigates the gases that the sensor is exposed to. Retrieved from (12 August 2020). https://www.crowcon.com/blog/cross-sensitivity-of-toxic-sensors-chris-investigates-the-gases-that-the-sensor-is-exposed-to/.

(4) EHS Today. (2020). Understanding cross sensitivities can help keep workers safer. Retrieved from (12 August 2020): https://www.ehstoday.com/sponsored/article/21919610/understanding-cross-sensitivities-can-help-keep-workers-safer.

(5) ATSDR (2020). Medical management guidelines (MMGs): Nitrogen oxides. Atsdr.cdc.gov.

(6) Boningari, T., Smirniotis, P.G. (2016). Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Current Opinion in Chemical Engineering, 13, 133-141.

(7) Jonson, J.E., Borken-Kleefeld, J., Simpson, D., Nyíri, A., Posch, M., Heyes, C. (2017). Impact of excess NO x emissions from diesel cars on air quality, public health and eutrophication in Europe. Environmental Research Letters, 12(9), 094017.

(8) Weinberger, B., Laskin, D.L., Heck, D.E., Laskin, J.D. (2001). The toxicology of inhaled nitric oxide. Toxicological Sciences, 59(1), 5-16.

(9) EPA (1999). Nitrogen oxides (NOx), Why and how the are controlled (EPA-456/F-99-006R; p. 57). Clean Air Technology Center (MD-12), U.S. Environmental Protection Agency. Retrieved from https://www3.epa.gov/ttncatc1/dir1/fnoxdoc.pdf.

(10) CDC (2019). CDC - NIOSH Pocket guide to chemical hazards-nitrogen dioxide. Retrieved from https://www.cdc.gov/niosh/npg/npgd0454.html.

(11) Toxicants, N.R.C. (US) S. on R.E. (1998). Acute toxicity of nitrogen dioxide. In assessment of exposure-response functions for rocket-emission toxicants. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK230446/.

(12) Degraeuwe, B., Thunis, P., Clappier, A., Weiss, M., Lefebvre, W., Janssen, S., Vranckx, S. (2017). Impact of passenger car NOX emissions on urban NO2 pollution - Scenario analysis for 8 European cities. Atmospheric Environment, 171, 330-337.

(13) Agents Classified by the IARC Monographs, Volumes 1-127 - IARC Monographs on the Identification of Carcinogenic Hazards to Humans. (n.d.). Retrieved from (8 July 2020) https://monographs.iarc.fr/agents-classified-by-the-iarc/.

(14) Ministerio Industria y Energía (1985). Monitoring poisonous gases in the atmosphere during underground activities. Royal Decree 863/1985 of 2 April, which approves the General Regulation of Mine Safety Basic Standards. ITC 04.7.06. (1985).

(15) Tato Diogo, M. (2020). European legal framework related to underground mining and tunnelling concerning commission directive (EU) 2017/164, 31 January establishing a fourth list of indicative occupational exposure limit values. International Journal of Mining Science and Technology, 30(4), 541-545.

(16) Dowker, P., Walsh, P. (2009). Real-time measurement of nitrogen monoxide in tunnels and its oxidation rate in diluted diesel exhaust (Research Report No. RR757).

(17) Walsh, P., Hemingway, M., Duncan, R. (2013). Review of alarm setting for toxic gas and oxygen detectors (No. RR973). https://www.hse.gov.uk/research/rrpdf/rr973.pdf.

(18) Karakus, M., Fowell, R. (2004). An insight into the New Austrian Tunnelling Method (NATM).

(19) Vähäaho, I. (2014). Underground space planning in Helsinki. Journal of Rock Mechanics and Geotechnical Engineering, 6(5), 387-398.

(20) Drill and Blast Method (n.d.). Retrieved from (29 July 2020) http://www.railsystem.net/drill-and-blast-method/.

(21) Dowker, P., Walsh, P. (2009). RR757-Real-time measurement of nitrogen monoxide in tunnels (Research Report No. RR757). Health and Safety Executive, (HSE). https://www.hse.gov.uk/research/rrhtm/rr757.htm.

(22) Chang, X., Chai, J., Liu, Z., Qin, Y., Xu, Z. (2020). Comparison of ventilation methods used during tunnel construction. Engineering Applications of Computational Fluid Mechanics, 14(1), 107-121.

(23) Fumes from Blasting Operations. (n.d.). Retrieved from (29 July 2020) https://www.ime.org/content/48.

(24) Sepasgozar, S.M.E., Blair, J. (2021). Measuring non-road diesel emissions in the construction industry: A synopsis of the literature. International Journal of Construction Management, 21(6), 582-597.

(25) Euromines (2017). Best practices on reducing NOx and CO gases in the extractive industry. http://www.euromines.org/files/euromines_brochure_best-practices_final.pdf.

(26) Breuer, J.L., Samsun, R.C., Peters, R., Stolten, D. (2020). The impact of diesel vehicles on NOx and PM10 emissions from road transport in urban morphological zones: A case study in North Rhine-Westphalia, Germany. Science of The Total Environment, 727, 138583.

(27) Steiner, S., Bisig, C., Petri-Fink, A., Rothen-Rutishauser, B. (2016). Diesel exhaust: Current knowledge of adverse effects and underlying cellular mechanisms. Archives of Toxicology, 90, 1541-1553. https://link.springer.com/content/pdf/10.1007/s00204-016-1736-5.pdf.

(28) Mainiero, R.J., Iii, J.H.R., Harris, M.L., Sapko, M.J. (2002.). Behavior of nitrogen oxides in the product gases from explosive detonations. 10.

(29) Khan, M.A. H., Rao, M. V., Li, Q. (2019). Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S. Sensors, 19(4), 905.

(30) AENOR-CEN (2016) UNE-EN 482:2012+A1:2016 Workplace exposure-General requirements for the performance of procedures for the measurement of chemical agents. Asociación Española de Normalización (AENOR).

(31) Crossrail (2017). Best practice guide air quality. https://learninglegacy.crossrail.co.uk/wp-content/uploads/2017/03/HS17_BPG_AirQuality.pdf.

Publicado

2022-05-19

Cómo citar

García González, H. ., González García, J. ., González-Cachón Fernández, S. ., & Pellicer Mateos, S. . (2022). Niveles de óxidos de nitrógeno en construcción de túneles con el NATM durante el periodo de transición de la Directiva 2017/164/EU. Informes De La Construcción, 74(566), e439. https://doi.org/10.3989/ic.82778