Análisis de la perspectiva del usuario con respecto a los edificios con fardos de paja: Un estudio de encuesta

Autores/as

DOI:

https://doi.org/10.3989/ic.89959

Palabras clave:

fardos de paja, satisfacción del usuario, materiales sostenibles, encusta online, sistema constructivo, edificios sostenibles

Resumen


La presente investigación tiene como objetivo evaluar la satisfacción de los usuarios de los edificios de fardos de paja en términos de rendimiento del producto. El objetivo propuesto se logró a través de una encuesta aplicada a una muestra de 75 propietarios en todo el mundo. Los resultados indican que la mayoría de los participantes eligieron la técnica del fardo de paja debido a la sostenibilidad que brinda el sistema. Más de la mitad de los entrevistados dijeron que la construcción fue más cara de lo esperado, pero 84% consideran que los costes de mantenimiento son bajos. El yeso exterior fue el elemento constructivo que más mantenimiento necesitó a lo largo de los años. La fontanería fue el servicio especializado más subcontratado durante la construcción. Todos los participantes informaron que están satisfechos con sus edificios y el 96% dijo que volverían a utilizar este método.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) De Bes, F.T.; Kotler, P. (2011). Winning at innovation: The A-to-F model. London: Palgrave Macmillan.

(2) Yilmaz, M.; Bakis, A. (2015). Sustainability in construction sector. Procedia - Social and Behavorial Sciences, 195: 2253-2262. https://doi.org/10.1016/j.sbspro.2015.06.312

(3) Hall, M. (2019). Counting straw: the capacity of New Zealand's grain growing sector to supply straw for construction. In A. Agrawal and R. Gupta (Eds). Revisiting the Role of Architecture for Surviving Development (pp. 1-10), 53rd International Conference of the Architectural Science Association (ANZASca).

(4) The World Bank (20 August 2019). The United Nations Populations Division's World Urbanization Prospects - Indicators. Retrieved from http://data.worldbank.org/indicator.

(5) Navacerrada, M.Á.; De la Prida, D.; Sesmero, A.; Pedrero, A.; Gómez, T.; Fernández-Morales, P. (2021). Comportamiento acústico y térmico de materiales basados en fibras naturales para la eficiencia energética em edificación. Informes de la Construcción, 73(561): e373. https://doi.org/10.3989/ic74558

(6) Burroughs, S.; Ruzicka, J. (2019). The use of natural materials for construction projects - Social aspects of sustainable building: Case studies from Australia and Europe. IOP Conference Series: Earth and Environment Science, 290: 012009. https://doi.org/10.1088/1755-1315/290/1/012009

(7) Adedeji, A.A.; Ibiyeye, A.; Adedeji, A.M. (2018). Effect of temperature on strawbale wall rendered with laterite and clay nanoparticle. MATEC Web of Conferences, 165: 22008. https://doi.org/10.1051/matecconf/201816522008

(8) Adedeji, A.A.; Ibiyeye, A.; Adedeji, A.M. (2018). Hysteresis analysis of prestressed brick frame with strawbale masonry infill subjected to seismic loads. MATEC Web of Conferences, 165: 22009. https://doi.org/10.1051/matecconf/201816522009

(9) Douzane, O.; Promis, G.; Roucoult, J.; Le, A.T.; Langlet, T. (2016). Hygrothermal perfomance of a straw bale building: In situ and laboratory investigations. Journal of Building Engineering, 8: 91-98. https://doi.org/10.1016/j.jobe.2016.10.002

(10) Chaussinand, A.; Scartezzini, J.L.; Nik, V. (2015). Straw bale: A waste from agriculture, a new construction material for sustainable buildings. Energy Procedia, 78: 297-302. https://doi.org/10.1016/j.egypro.2015.11.646

(11) Gupta, M.S. (2015). Straw bale construction: A revolutionary building material in low cost housing. International Journal of Recent Advances in Multidisciplinary Research, 2(7): 0583-0587.

(12) Pritchard, M.B.; Pitts, A. (2006). Evaluation of strawbale building: Benefits and risks. Architectural Science Review, 49(4): 372-384. https://doi.org/10.3763/asre.2006.4949

(13) Vega, P.; Juan, A.; Guerra, M.I.; Morán, J.M.; Aguado, P.J.; Llamas, B. (2011). Mechanical characterisation of traditional adobes from the north of Spain. Construction and Building Materials, 25(7): 3020-3023. https://doi.org/10.1016/j.conbuildmat.2011.02.003

(14) Parisi, F.; Asprone, D.; Fenu, L.; Prota, A. (2015). Experimental characterization of Italian composite adobe bricks reinforced with straw fibers. Composite Structures, 122: 300-307. https://doi.org/10.1016/j.compstruct.2014.11.060

(15) Marques, B.; Tadeu, A.; Almeida, J.; António, J.; De Brito, J. (2020). Characterisation of sustainable building walls made from rice straw bales. Journal of Building Engineering, 28: 101041. https://doi.org/10.1016/j.jobe.2019.101041

(16) Yin, X.; Dong, Q.; Lawrence, M.; Maskell, D.; Yu, J.; Sun, C. (2020). Research on prediction model for durability of straw bale walls in warm (humid) continental climate - A case study in Northeast China. Materials, 13: 3007. https://doi.org/10.3390/ma13133007 PMid:32640666 PMCid:PMC7372436

(17) Cornaro, C.; Zanella, V.; Robazza, P.; Belloni, E.; Buratti, C. (2020). An innovative straw bale wall package for sustainable buildings: experimental characterisation, energy and environmental performance assessment. Energy and Buildings, 208: 109636. https://doi.org/10.1016/j.enbuild.2019.109636

(18) Minke, G., Mahlke, F. (2005). Manual de construcción con fardos de paja - Fundamentos - Construcciones - Ejemplos. Montevideo: Editorial Fin del Siglo.

(19) Elias-Ozkan, S.T., Summers, F. (2013). Thermal performance of three different strawbale buildings at the Kerkenes Eco-center. Journal of Green Building, 8(4): 110-126. https://doi.org/10.3992/jgb.8.4.110

(20) Cascone, S.; Evola, G.; Gagliano, A.; Sciuto, G.; Parisi, C.B. (2019). Laboratory and in-situ measurements for thermal and acoustic performance of straw bales. Sustainability, 11: 5592. https://doi.org/10.3390/su11205592

(21) Mutani, G.; Azzolino, C.; Macrì, M.; Mancuso, S. (2020). Straw buildings: A good compromise between environmental sustainability and energy-economic savings. Applied Sciences, 10: 2858. https://doi.org/10.3390/app10082858

(22) Chiras, D.D. (2000). The natural house: A complete guide to healthy, energy efficient and environmental homes. Vermont: Chelsea Green Publishing Co.

(23) Gharaibeh, N.G.; Valenzuela, B.; Machado, J.; Cook, S. (2009). Green approach for coping with the high cost of infrastructure services in U.S. colonies. Journal of Infrastructure Systems, 15(4): 417-424. https://doi.org/10.1061/(ASCE)1076-0342(2009)15:4(417)

(24) Wang, J.; Zhang, X. (2005). Analysis on residential energy conservation for straw-bale building: Jianzhu Cailiao Xuebao. Journal of Building Materials, 8(1): 109-112.

(25) Wall, K.; Walker, P.; Gross, C.; White, C.; Mander, T. (2012). Development and testing of a prototype straw bale house. Proceedings of the Institution of Civil Engineers - Construction Materials, 165: 377-384. https://doi.org/10.1680/coma.11.00003

(26) Yin, X.; Dong, Q.; Zhou, S.; Yu, J.; Huang, L.; Sun, C. (2020). Energy-saving potential of applying prefabricated straw bale construction (PSBC) in domestic buildings in northern China. Sustainability, 12: 3464. https://doi.org/10.3390/su12083464

(27) D'Alessandro, F.; Bianchi, F.; Baldinelli, G.; Rotili, A.; Schiavoni, S. (2017). Straw bale constructions: Laboratory, in field and numerical assessment of energy and environmental performance. Journal of Building Engineering, 11: 56-68. https://doi.org/10.1016/j.jobe.2017.03.012

(28) Sabapathy, K.A.; Gedupudi, S. (2019). Straw bale based constructions: Measurement of effective thermal transport properties. Construction and Building Materials, 198: 182-194. https://doi.org/10.1016/j.conbuildmat.2018.11.256

(29) Platt, S.; Maskell, D.; Walker, P.; Laborel-Préneron, A. (2020). Manufacture and characterisation of prototype straw bale insulation products. Construction and Building Materials, 262: 120035. https://doi.org/10.1016/j.conbuildmat.2020.120035

(30) Costes, J.; Evrard, A.; Biot, B.; Keutgen, G.; Daras, A.; Dubois, S.; Lebeau, F.; Courard, L. (2017). Thermal conductivity of straw bales: Full size measurements considering the direction of the heat flow. Buildings, 7(1): 11. https://doi.org/10.3390/buildings7010011

(31) Yin, X.; Lawrence, M.; Maskell, D.; Chang, W. (2018). Construction and monitoring of experimental straw bale building in northeast China. Construction and Building Materials, 183: 46-57. https://doi.org/10.1016/j.conbuildmat.2018.05.283

(32) Yin, X.; Lawrence, M.; Maskell, D.; Ansell, M. (2018). Comparative micro-structure and sorption isotherms of rice straw and wheat straw. Energy and Buildings, 173: 11-18. https://doi.org/10.1016/j.enbuild.2018.04.033

(33) Gallegos-Ortega, R.; Magaña-Guzmán, T.; Reyes-Lópes, J.; Romero-Hernández, M.S. (2017). Thermal behavior of a straw bale building from data obtained in situ. A case in Northwestern México. Building and Environment, 124: 336-341. https://doi.org/10.1016/j.buildenv.2017.08.015

(34) Garas, G.; Allam, M.; El Dessuky, R. (2009). Straw bale construction as an economic environmental building alternative - a case study. Journal of Engineering and Applied Sciences, 4 (9): 54-59.

(35) Cascone, S.; Rapisarda, R.; Cascone, D. (2019). Physical properties of straw bales as a construction material: A review. Sustainability, 11(12): 3388. https://doi.org/10.3390/su11123388

(36) Koh, C. H., Kraniotis, D. (2020). A review of material properties and performance of straw bale as building material. Construction and Building Materials, 259: 120385. https://doi.org/10.1016/j.conbuildmat.2020.120385

(37) Ehrenzweig, D. (1999). Consumers acceptance of straw-bale housing. International Journal for Housing Science and Its Applications, 23(1): 69-77.

(38) Ruparathna, R., Hewage, K. (2015). Sustainable procurement in the Canadian construction industry: current practices, drivers and opportunities. Journal of Cleaner Production, 109: 305-314. https://doi.org/10.1016/j.jclepro.2015.07.007

(39) Meehan, J.; Bryde, D.J. (2014). Procuring sustainability in social housing: The role of social capital. International Journal of Purchasing and Supply Management, 20: 74-81. https://doi.org/10.1016/j.pursup.2014.01.002

(40) Meehan, J.; Bryde, D.J. (2015). A field-level examination of the adoption of sustainable procurement in the social housing sector. International Journal of Operations & Production Management, 35: 982-1004. https://doi.org/10.1108/IJOPM-07-2014-0359

(41) Brammer, S.; Walker, H. (2011). Sustainable procurement in the public sector: an international comparative study. International Journal of Operations & Production Management, 31: 452-476. https://doi.org/10.1108/01443571111119551

(42) Bolfarine, H.; Bussab, W.O. (2005). Sampling elements, São Paulo: Blucher.

(43) Beaudry, K.; MacDougall, C. (2019). Structural performance of non-plastered modular straw bale wall panels under transverse and gravity loads. Construction and Building Materials, 216: 424-439. https://doi.org/10.1016/j.conbuildmat.2019.04.186

Publicado

2022-11-10

Cómo citar

Barzellay Ferreira da Costa, B. ., Diminic, A. L. ., Guedes Sias Thompson, S. J. ., & Naked Haddad, A. . (2022). Análisis de la perspectiva del usuario con respecto a los edificios con fardos de paja: Un estudio de encuesta. Informes De La Construcción, 74(568), e469. https://doi.org/10.3989/ic.89959

Número

Sección

Artículos