Resistance of Concrete-Filled Tubular Structures (CFT) on Integral Bridges

Authors

  • R. Chacón Universitat Politècnica de Catalunya
  • E. Mirambell Universitat Politècnica de Catalunya
  • E. Real Universitat Politècnica de Catalunya

DOI:

https://doi.org/10.3989/ic.11.098

Keywords:

Integral bridges, concrete-filled tubes, composite structures

Abstract


In this paper, an in-depth analysis of the structural response of concrete-filled tubular structures (CFT) is presented. The main objective of the study is to assess the resistance of these structural elements when subjected to lateral displacements. These displacements, together with the corresponding axial forces, represent the actions to which the integral bridges piers are subjected to. For the sake of studying this response, a numerical model is used as a simulation tool over an hypothetical matrix of CFT. These numerical studies together with a wide experimental database found in the literature have been useful for drawing conclusions concerning the cross-sectional capacity of the CFT. A design proposal for this cross-sectional capacity which accounts for confinement is given. This proposal has been compared structurally with the present formulation found in EN1994.

Downloads

Download data is not yet available.

References

(1) EN1994. Eurocode 4. Design of composite steel and concrete structures Part 1.1 General rules and rules for buildings. CEN. 2004.

(2) Feldmann, M. et al.: Economic and durable design of composite bridges with integral abutments, Research Fund for Coal and Steel, European Research Area. 2008.

(3) White II, H.; Pétursson, H.; Collin P.: “Integral Abutment Bridges: The European Way.” Practice periodical on structural design and construction, ASCE, vol. 15, nº 3 (2010), pp. 201-208. http://dx.doi.org/10.1061/(ASCE)SC.1943-5576.0000053

(4) Guía para la concepción de puentes integrales en carreteras y autopistas. Ministerio de Fomento, 2000.

(5) Inai, E.; Mukai, A.; Kai, M.; Tokinoya, H.; Fukumoto, T.; Mori, K.: “Behaviour of Concrete-Filled Steel Tube Beam Columns”, Journal of Structural Engineering, 2004, ASCE.

(6) Kuranovas, A.; Goode, D.; Kazimieras, A.; Zhong, S.: “Load bearing capacity of concrete- filled steel columns”, Journal of Civil Engineering and Management, vol. 15, nº 1 (2009), pp. 21-33. http://dx.doi.org/10.3846/1392-3730.2009.15.21-33

(7) Uy, B.: “Strength of Concrete Filled Steel Box Columns Incorporating Local Buckling”, Journal of Structural Engineering, ASCE, vol. 126, nº 3 (2000), pp. 341-352. http://dx.doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341)

(8) Kwon, Y.; Seo, S.; Kang, D.: “Prediction of the squash loads of concrete-filled tubular section columns with local buckling”, Thin-w2009alled structures, vol. 49, nº 1 (2011).

(9) Shams, M.; Saadeghvaziri, M.: “Nonlinear response of concrete-filled steel tubular columns under axial loading”, ACI journal, vol. 96, nº 6 (1999), pp. 1009-1017.

(10) Johansson, M.: “The efficiency of passive confinement in CFT columns”, Steel and Composite Structures, vol. 2 nº 5 (2002), pp. 379-396.

(11) Richart, F.; Brandzaeg, A.; Brown R.: “A study of the failure of concrete under combined compressive stresses. University of Illinois Bulletin”, Bulletin 185, Champaign (IL, USA): University of Illinois Engineering Experimental Station. 1928.

(12) Susantha, K.; Ge, H.; Usami, T.: “A capacity prediction procedure for concrete-filled steel columns”, Journal of Earthquake Engineering, vol. 5, nº 4 (2001), pp. 483–520.

(13) Johansson M.; Gylltoft K.: “Mechanical Behavior of Circular Steel–Concrete Composite Stub Columns”, Journal of Structural Engineering, ASCE, vol. 128, nº 8 (2002), pp. 1073-1081. http://dx.doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073)

(14) Hatzigeorgiou, G.: “Numerical model for the behavior and capacity of circular CFT columns, Part I: Theory”, Engineering Structures, vol. 30, nº 6 (2008), pp. 1573–1578. http://dx.doi.org/10.1016/j.engstruct.2007.11.001

(15) Hatzigeorgiou, G.: “Numerical model for the behavior and capacity of circular CFT columns, Part II: Verification and extension”, Engineering Structures, vol. 30, nº 6 (2008), pp. 1579–1589. http://dx.doi.org/10.1016/j.engstruct.2007.11.002

(16) Oliveira, de W.; Nardin, S.; El Debs, A.; El Debs, M.: “Influence of concrete strength and length/diameter on the axial capacity of CFT columns”, Journal of Constructional Steel Research, vol. 65, nº 12 (2009), pp. 2103–2110. http://dx.doi.org/10.1016/j.jcsr.2009.07.004

(17) Sakino, K.; Nakahara, H.; Morino, S.; Nishiyama, I.: “Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns”, Journal of Structural Engineering, ASCE, vol. 130, nº 2 (2004), pp. 180-188. http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)

(18) Goode, D.: “Composite columns-1819 tests on concrete-filled steel tube columns compared with Eurocode 4”, The Structural Engineer, vol. 86, nº 16 (2008).

(19) Kloppel, V.; Goder, W.: “An investigation of the load carrying capacity of concretefilled steel tubes and development of design formulae”, Der Stahlbau, vol. 26, nº 1 (1957), pp 44-50.

(20) Knowles, R.; Park, R.: “Strength of Concrete Filled Steel Tubular Columns”, Journal of the Structural Division, vol. 95 nº ST12 (1969), pp. 2565-2587.

(21) Hajjar, J.; Gourley, B. A.: “Cyclic Nonlinear Model for Concrete-Filled Tubes. I: Formulation”, Journal of Structural Engineering, ASCE, vol. 123, nº 6 (1997) pp. 736-744. http://dx.doi.org/10.1061/(ASCE)0733-9445(1997)123:6(736)

(22) Liang, Q.; Fragomeni, S.: “Nonlinear analysis of circular concrete-filled steel tubular short columns under eccentric loading”, Journal of Constructional Steel Research, vol. 66, nº 2 (2010), pp. 159-169. http://dx.doi.org/10.1016/j.jcsr.2009.09.008

(23) Elremaily, A.; Azizinamini, A.: “Behavior and Strength of Circular Concrete-filled Tube Columns”, Journal of Constructional Steel Research, vol. 58, nº 12 (2002), pp. 1567-1591. http://dx.doi.org/10.1016/S0143-974X(02)00005-6

(24) Lakshmi, B.; Shanmugam, N. E.: “Nonlinear analysis of in-filled steel- concrete composite columns”, Journal of Structural Engineering, ASCE, vol. 128, nº 7 (2002), pp. 922-933. http://dx.doi.org/10.1061/(ASCE)0733-9445(2002)128:7(922)

(25) Romero, M.; Bonet, J.; Ivorra, S.: “Review of Nonlinear Analysis Models for Concrete- Filled Tubular (CFT) columns”, Proceedings in Innovation in Civil and Structural Engineering Computing, Rome, Italy, Saxe-Coburg Publications, 2002.

(26) Portolés, J. M.: Estudio experimental y numérico de soportes tubulares circulares de acero esbeltos rellenos de hormigón de alta resistencia, Tesis Doctoral, Departament d’Enginyeria Mecánica i Construcció, Universitat Jaume I de Castelló. 2010.

(27) Hu, H.; Huang, C.; Wu, M.; Wu, Y.: “Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect”, Journal of Structural Engineering, ASCE, vol. 129, nº 10 (2003), pp. 1322-1329. http://dx.doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)

(28) Schneider, S.: “Axially loaded concrete-filled steel tubes”, Journal of Structural Engineering, ASCE, vol. 124, nº 10 (1998), pp. 1125–1138. http://dx.doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)

(29) Chacon, R.; Mirambell, E.; Marí, A.: “Long-term response of concrete-encased composite columns”, Proceedings of the Institution of Civil Engineers, Structures and Buildings, vol. 160, nº SB5 (2007), pp. 273-285. http://dx.doi.org/10.1680/stbu.2007.160.5.273

(30) Abaqus FEA, Simulia© Dassault Systèmes, 2010.

(31) EHE. Instrucción de Hormigón Estructural. Ministerio de Fomento. España, 2008.

(32) EN1992. Design of concrete structures, Part 1-1, General rules and rules for buildings, CEN 2004.

Downloads

Published

2012-09-30

How to Cite

Chacón, R., Mirambell, E., & Real, E. (2012). Resistance of Concrete-Filled Tubular Structures (CFT) on Integral Bridges. Informes De La Construcción, 64(527), 355–370. https://doi.org/10.3989/ic.11.098

Issue

Section

Research Articles