F2TE3: sistema de cerramiento transparente, ligero, de altas prestaciones energéticas que permite el diseño con formas libres

Autores/as

  • L. Alonso Universidad Politécnica de Madrid
  • C. Bedoya Universidad Politécnica de Madrid
  • B. Lauret Universidad Politécnica de Madrid
  • F. Alonso Universidad Politécnica de Madrid

DOI:

https://doi.org/10.3989/ic.12.068

Palabras clave:

Aislamiento con gel de sílice monolítico, aerogel, energy reduction, space saving, thermal insulation, vacuum insulation transparent panels, structural panel, cerramiento ligero, paneles de formas libres, paneles transparentes, alta eficacia energética

Resumen


Se plantea un nuevo sistema de cerramiento monocasco ligero, de espesor mínimo, de alta eficiencia energética, mediante la utilización de tecnología tipo VIP 1, con un alto grado de transmisión de la luz, que permite el diseño con formas libres, para su utilización en proyectos arquitectónicos. La investigación se basa en el estudio de los elementos de cerramiento existentes en el mercado, en especial los implementados con aerogel como aislamiento térmico, ya que se trata del aislante transparente que mejores prestaciones ofrece actualmente, y determina que ninguno otro sistema de aislamiento cumple todas las prestaciones que se buscan con el nuevo sistema propuesto. Aún así, de ellos se pueden extraer cualidades para generarlo: la tecnología VIP, el aerogel monolítico como material aislante, y el Polimetilmetacrilato como material de encapsulado. Estos elementos de diseño nos han permitido definir, junto con ensayos realizados, y datos de estudios independientes, un nuevo sistema de cerramiento de formas libres que ofrece altas prestaciones energéticas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Clinton Foundation. (2009). CCIs Energy Efficiency Building Retrofit Program. American Collage&University, Presidents Climate Commitment, EPC Toolkit for Higher Education.

(2) English Heritage. (2008). Energy conservation in traditional buildings. English Heritage Program.

(3) Groesser, S. N., Ulli-Beer, S., Mojtahedzadeh, M. T. (2006). Diffusion Dynamics of Energy- Efficient Innovations in the Residential Building Environment. 24th International Conference of the System. Países Bajos.

(4) Heinemann, U., Weinländer, H., Gintars, D. (2011). Insulation through vacuums. High performance termal insulation for building envelopes and windows. Themen Info 1/2011. A compact guide to energy research. BINE Informationsdienst. Fiz Karlsruhe. Leibniz (Alemania): Institute for Information Infraestructure Helmann-von-Helmholtz-Platz.

(5) Nieto, J., Linares, P. (2011). Cambio Global Espa-a 2020/50. Energía, Economía, Sociedad. Resumen ejecutivo. Fundación CONAMA, Centro Complutense de Estudios e Información Ambiental.

(6) Ministerio de Medio Ambiente. (2012). Plan Nacional de Asignación de Derechos de Emisión 2008-2012 (PAN). Ministerio de Medio Ambiente. Actualización.

(7) Comisión Europea. (2010). Europa 2020. Una estrategia para un crecimiento inteligente, sostenible e integrador. Bruselas: Comisión Europea (2010-2014).

(8) Department for Communities and local Government of London. (2007). Building Regulations. Energy efficiency requirements for new dwellings. Good practice and guidance, Reports and summaries, planning, building and the environment 2010-2013.

(9) Ministerio de Vivienda. (2006). Real Decreto 314/2006, de 17 de marzo 2006, (BOE 28-marzo-2006).

(10) U.S. Department of Energy. DOE 2008. (2008). Building Technologies program. Office of Energy Efficiency and Renewable Energy.

(11) U.S. Building Commissioning and the WBDG Project Management Committee (2010). Hole Building Design Guide. National Institute of Building Sciences.

(12) MoC. (2009). MOHURD's Three Star green building rating system. Ministry of Construction Green Building Evaluation Standard.

(13) Heredia-Winery, L. (2007). Zaha Hadid. Architecture and Urbanism, 440: 38-45.

(14) Puebla-Pons, J. (2002). Visualidad y representación en Zaha Hadid. Visualización en Arquitectura y Patrimonio, ETS de Arquitectura de Barcelona - Universidad Politécnica de Catalu-a - UPC.

(15) Hutt D. (2004). Walt Disney Concert Hall, Los Angeles, California, USA 2003; Architects: Frank Gehry of Gehry Partners. A+U: Architecture and Urbanism, 400(1): 8-26.

(16) Lubell, S. (2004). Gehry proposes plan that would transform Brooklyn. Architectural Record, 192(1): 26.

(17) Koolhaas, R. (2002, octubre). Junkspace. STOR, Obsolescence, 100: 175-190.

(18) Weill, C., Melot C., Vermande, E. (2007). Rethinking Berlin//a city and its river. Rem Koolhaas/S,M,L,XL. Urban and architectural research, TU Berlin-Master Urbanism.

(19) Herzog & De Meuron. (2003). Herzog & de Meuron's Chinese bird's nest swoop. Architects Journal, pág. 8.

(20) Herzog & De Meuron, Craig-Martin, M. (2003). Laban Dance Centre, Deptford. Building Design, pp.10-15.

(21) Grillo, A. C. (2008). Nature's mimesis in architecture. PUC Minas.

(22) Gelbard, S. (2005). Jean Nouvel's Guggenheim Rio: a Global and Ideological Análisis. Carleton School of Architecture.

(23) Márquez-Cecilia, F., Levene, R. (2007). SANAA: Kazuyo Sejima, Ryue Nishizawa 2004- 2008: topologia arquitectonica = architectural topology. El Croquis, 139.

(24) Buck, D. N. (2000). Responding to chaos: tradition, technology, society and order in Japanese design, London: Spon.

(25) Philippou, S. (2008). Oscar Niemeyer: curves of irreverence New Haven. London: Yale University Press.

(26) Ryser, J. (2008). Island of Innovation for Aviles: a new Guggenheim effect?; architects: Oscar Niemeyer and others. Topos: the International Review of Landscape Architecture and Urban Design, 63.

(27) Elmer, F. L., Gless, R. M. (2001). Renzo Piano, Dialogue.

(28) Graham, P. (2007). What if streets went upwards? Rethinking the skyscraper context and its context. Evolo'07 Skyscraper Ideas Competition, Arch 384 Competition Elective.

(29) Heinemann, U., Weinläder, H., Ebert, H.P. (2009). Envolturas de edificios energéticamente eficientes: los nuevos materiales y componentes. (ZAE BAYERN, Grupo de trabajo de energía, EPA). Hamburgo (Alemania).

(30) Rubin, M., Lampert, C. M. (1982). Transparent Silica Aerogel for Window Insulation. Lawrence Berkley Laboratory, University of California.

(31) Jensen, K., Kristiansen, F., Schultz, J. (2005). HILIT+. Highly Insulating and Light Transmitting Aerogel Glazing for Super Insulating Windows. Department of civil engineering (BYG·DTU), Lyngby (Dinamarca).

(32) Simmler, H., Heinemann, U., Kumaran, K., Quénard, D., Noller, K., Stramm, C., Cauberg, H. (2005 septiembre). Vacuum Insulation Panels. Study on VIP-components and Panels for Service Life Prediction of VIP in Building Applications (Subtask A). HiPTI, IEA/ ECBCS, Anexo 39.

(33) Casa Duocastella, Ll. (2008). Aerogeles nanocomposats: un nou material (Tesis doctoral). UAB, ICMAB y CSIC.

(34) Ibeh, C. C., Bubacz, M. et al. (2008). Current Trends in Nanocomposite Foams. Journal of Cellular Plastics, 44(6): 493-515. http://dx.doi.org/10.1177/0021955X08097707

(35) Cotet, L.C., Gich, M., Roig, A., Popescu, I.C., Cosoveanu V., Molins, E. (2006). Synthesis and Structural Characteristics of Carbon Aerogels with a High Content of Fe, Co, Ni, Cu, and Pd. Journal of Non-Crystalline Solids, 352(26-27): 2772-2777. http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.039

(36) Martín, L., Oriol Ossó, J., Ricart, S., Roig, A., García, O., Sastre, R. (2008). Organo-modified silica Aerogels and implications for material hydrophobicity and mechanical properties. Journal of Materials Chemistry, 18: 207-213. http://dx.doi.org/10.1039/b712553d

(37) Ismail, K. A. R., Salinas, C. T. (2008). Comparison between PCM filled glass windows and absorbing gas filled windows. Energy and Buildings, 40(5): 710-719. http://dx.doi.org/10.1016/j.enbuild.2007.05.005

(38) Wong, I.L., Eames, P.C., Perera, R.S. (2007). A review of transparent insulation systems and the evaluation of payback period for building applications. Solar Energy, 81(9): 1058-1071. http://dx.doi.org/10.1016/j.solener.2007.04.004

(39) Moner-Girona, M., Martínez, E., Roig, A. (2002). Micromechanical properties of carbonsilica Aerogel compositesAerogeles. Applied Physics A Materials Science & Processing, (74)1: 119-122. http://dx.doi.org/10.1007/s003390100986

(40) Baetens, R., Jelle, B. P., Thueb, J. V., Tenpierikd, M. J., Grynninga, S., Uvsløkka, S., Gustavsene, A. (2010). Vacuum insulation panels for building applications: A review and beyond. Energy and Buildings, 42(2):147-172. http://dx.doi.org/10.1016/j.enbuild.2009.09.005

(41) Gibson, D. A. (2009). Construction Panel System and Method of Manufacture Thereof. Patent Cooperation Treaty Application. (WO09105468).

(42) Bartley-Cho, J. D., Pousha, F.D., Yasaki, C.M., Reynolds & Ross, S. at Northrop Grumman Corporation. (2006). Thermally insulated sandwich type joint structure. European Patent, patno:EP1719924.

(43) Willems, W. M., Schild, K. (2008). Where to use vacuum insulation… and where not! 8th Nordic Symposium on BuildingPhysics, Proceedings págs. 1165-1172, Copenhagen (Dinamarca).

(44) Mukhopadhy, P., Kumaran, K., Ping, F., Normandin, N. (2011, 10-13 de mayo). Use of Vacuum Insulation Panel in Building Envelope Construction: Advantages and Challenges. NRCC13th Canadian Conference on Building Science and Technology, pp. 1-10. Winnipeg (Manitoba).

(45) Fricke J., Heinemann, U., Ebert, H.P. (2008). Vacuum insulation panels. From research to market. Vacuum, 82(7): 680-690. http://dx.doi.org/10.1016/j.vacuum.2007.10.014

(46) Arasteh, D., Mitchell, R., Kohler, C., Rubin, M., Selkowitz, S., Lee, E., Huang, J. (2006). LBNL Software for Analyzing Window Thermal Properties and Energy-Efficiency: Lawrence Berkeley National Laboratory.

(47) ISO (2012). ISO10077-2:2012: Thermal performance of windows, doors and shutters - Calculation of thermal transmittance - Part 2: Numerical method for frames.

(48) Kony, J., Childs, P. (2000). Validation of Heating 7.2 Simulations Using Hot Box Test Data for RASTRA Wall Form System with Expanded Polystyrene-Beads. Oak Ridge National Laboratory Buildings Technology Center, Tennessee (USA).

(49) BS EN (2003). BS EN 12412-2:2003: Thermal performance of windows, doors and shutters. Determination of thermal transmittance by hot box method. Frames.

(50) Özçiftçi, S. (2006). Development of reinforced PMMA sheets for office furnitures & a new junction detail proposal. Thesis Submitted to the Graduate School of Engineering and Sciences of Izmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Industrial Design. Turkey.

(51) Ghatak, A., Dupaix, R. B. (2010). Material Characterization and Continuum Modeling of Poly (Methyl Methacrylate) (PMMA) above the Glass Transition. International Journal of Structural Changes in Solids-Mechanics and Applications, 2(1): 53-63.

(52) Carlson, J. E., Van Deventer, J., Scolan, A., Carlander, C. (2003, 5-8 de octubre). Frequency and temperature dependence of acoustic properties of polymers used in pulse-echo systems. Proceedings IEEE Ultrasonics Symposium. Honolulu (Hawaii).

(53) Maysendhölder, W. (2008). Sound transmisión loss of vacuum insulation panels. Journal of the Acoustical Society of America, 123(5): 3815. Proccedings: Acoustics'08. Paris. Del 29 de junio al 4 de julio.

(54) Rickards, M. J. (2008). Braced sound barrier vacuum panel. Patent application number: 20080289898.

(55) NAHB Research Center, Inc. (2002). Accelerating the adoption of VIP technology in home construction, renovation, and remodeling. Project final report cooperative agreement, nº H- 21173CA. USA Department of Housing and Urban Development Office of Policy Development and Research.

(56) HIPIN. http://www.hipin.eu/project/objectives.jsp. Revisado en enero de 2012.

(57) Aegerter, M.A., Leventis, N., Koebel, M M. (eds.). (2011). Aerogels Handbook. Series: Advances in Sol-Gel Derived Materials and Technologies. http://dx.doi.org/10.1007/978-1-4419-7589-8

(58) Musgrave, D. (2009). Structural Vaccum Insulation panels. Thermal Visions, Inc. Ohio, USA. IVIS 2009.

(59) Tenpierik, M., Cauberg, H. (2006, 6-8 de septiembre). Vacuum Insulatin Panel: friend or foe?. PLEA2006, The 23rd Conference on Passive and Low Energy Architecture, Geneva (Suiza)

Descargas

Publicado

2013-12-30

Cómo citar

Alonso, L., Bedoya, C., Lauret, B., & Alonso, F. (2013). F2TE3: sistema de cerramiento transparente, ligero, de altas prestaciones energéticas que permite el diseño con formas libres. Informes De La Construcción, 65(532), 443–456. https://doi.org/10.3989/ic.12.068

Número

Sección

Artículos