Life cycle cost analysis as an economic evaluation tool for sustanaible building. Sate of the art
DOI:
https://doi.org/10.3989/ic.12.119Keywords:
Life-cycle costing, evaluation, economic feasibility, sustainable public procurementAbstract
Life-Cycle Costing (LCC) applied to construction building is a tool used for the evaluation of different project options from the perspective of economic efficiency environmentally sustainable. This method is based on obtaining the present value of future costs and benefits linked with decisions of the building process. The LCC analysis represents a paradigm change. It opposes a long-term vision with the traditional approach of obtaining immediate returns with a minimal initial investment, ignoring their economic and environmental future effects. This paper reviews the implementation of the LCC methodology in a global context, analyzing the development process and criteria for the evaluation of results. It concludes with a critical study of the possibilities of adapting the method to the structure of the Spanish property market, suggesting their integration into a sustainable public procurement system.
Downloads
References
(1) Lützkendorf, T. (2010). Sustainable properties – dream or trend?. Informes de la Construcción, 62(517): 5-22.
(2) WCED. (1987). Our common future. Report of the World Commission on Environment and Development. UK: Oxford University Press.
(3) Gluch, P., Baumann, H. (2004). The life cycle costing (LCC) approach: a conceptual discussion of its usefulness for environmental decision-making. Building and Environment, 39(5): 571-580. http://dx.doi.org/10.1016/j.buildenv.2003.10.008
(4) Klöpffer, W., Ciroth, A. (2011). Is LCC relevant in a sustainability assessment?. International Journal of Life Cycle Assessment, 16(2): 99-101. http://dx.doi.org/10.1007/s11367-011-0249-y
(5) Jørgensen, A., Hermann, I. T., Birk-Mortensen, J. (2010). Is LCC relevant in a sustainability assessment? Int J Life Cycle Assess, 15(6):531-532. http://dx.doi.org/10.1007/s11367-010-0185-2
(6) SMART SPP. (junio, 2011). Innovation through sustainable procurement. Tool for calculating Life-Cycle Costs and CO2 Emissions of products. http://www.smart-spp.eu/index.php?id=7633.
(7) CILECCTA - Construction Industry LifE Cycle CosT Analysis. http://www.cileccta.eu/.
(8) Departament of Industry-Comitte for Terotechnology. (1977). Life cycle costing in the management of assets : a practical guide. London: H.M. Stationery Office.
(9) Ruegg, R., McConnaughey, J. S., Thomas-Sav, G., Hockenbery, K. A. (1978). Life-Cycle Costing: A guide for selecting energy conservation projects for public buildings. Building Science Series, 113. Washington, D.C: National Bureau of Standards. http://dx.doi.org/10.6028/NBS.BSS.113
(10) Fuller, S.K., Petersen, S.R. (1995). Life-Cycle Costing Manual for the Federal Energy Management Program. Washington, DC: U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology.
(11) Rushing, A. S., Kneifel, J. D., Lippiatt, B. C. (2010, mayo). Handbook 135 and NBS Special Publication 709. Nacional Institute of Standards and Technology.
(12) Education Support Services/Facilities. (1999). Life Cycle Cost Analysis Handbook (1st Edition). State of Alaska: Department of Education & Early Development. http://www.eed.state.ak.us/facilities/publications/LCCAHandbook1999.pdf.
(13) Australian National Audit Office. (2001, diciembre). Life Cycle Costing. Better Practice Guide. http://www.anao.gov.au/uploads/documents/Life_Cycle_Costing.pdf.
(14) Kirkham, R., Alisa, M., Pimenta-da Silva, A., Grindley, T., Brondsted, J. (2004, septiembre). EUROLIFEFORM: An integrated probabilistic whole life cycle cost and performance model for buildings and civil infrastructure. RICS Foundation,
(15) Task Group 4. (2003, julio). Life-Cycle Cost in Construction. Final Report. UE: 3rd Tripartite Meeting Group on the Competitiveness of the Construction Industry. http://www.gci-uicp.eu/Documents/Reports/LCC%20FINAL%20REPORT-2.pdf.
(16) Davis Langdon Management Consulting. (2007, mayo). Life cycle costing (LCC) as a contribution to sustainable construction: a common methodology. Final Report. http://ec.europa.eu/enterprise/sectors/construction/competitiveness/ life-cycle-costing/index_en.htm.
(17) Norwegian Standard Classification System. (2013). NS 3454:2013. Livssykluskostnader for byggverk - Prinsipper ogstruktur. Noruega.
(18) ISO. (2008). ISO 15686-5:2008(E) Buildings and constructed assets — Service-life planning — Part 5: Life-cycle costing. International Organization for Standardization.
(19) BCIS .(2008). Standardized Method of Life Cycle Costing for Construction Procurement. A supplement to ISO 15686-5:2008 Buildings and constructed assets – Service life planning – Part 5: Life cycle costing. Building Cost Information Service.
(20) InPro Building (Open Information Environment for collaborative Processes throughout the lifecycle of a building). Report– The InPro Lifecycle Design Framework for Buildings. http://www.inpro-project.eu/main.asp
(21) Davis Langdon. (2010, 19 de enero). Development of a Promotional campaign for Life-Cycle Costing in Construction. Final Report. http://ec.europa.eu/enterprise/sectors/construction/files/compet/life_cycle_costing/100119_development_of_a_promotional_campaign_en.pdf.
(22) UNEP. (2011). Towards a Lyfe Cycle Sustainability Assessment. United Nations Environment Program.
(23) CEN-AFNOR. CEN/TC 350 Sustainability of construction works. EN 15643. Sustainability assessment of buildings.
(24) AEN/CTN 198:9. (2011). UNE-EN 15643-1:2011 Sostenibilidad en la construcción. Evaluación de la sostenibilidad de los edificios.
(25) González-Méndez, J.J., Robles-Urquijo, I. (2010, marzo). CILECCTA. Herramientas de análisis de ciclo de vida, costes y opciones. En SB10mad Sustainable Building Conference. Congreso Internacional sobre Edificación sostenible. Madrid.
(26) Fawcett, W., Hughes, M., Hannes, K., Albrcht, S., Vennström, A. (2012). Flexible strategies for long-term sustainability under uncertaint. Building Research & Information, 40(6): 545-557. http://dx.doi.org/10.1080/09613218.2012.702565
(27) CEN. (2007). CEN/TC 228 - Heating systems in buildings. EN 15459:2007. Energy performance of buildings - Economic evaluation procedure for energy systems in buildings.
(28) Hovde, P.J. (2005, 17-20 de abril). The Factor Method – A simple tool to service life estimation. En 10DBMC International Conference On Durability of Building Materials an Component. Lyon. http://www.irbdirekt.de/daten/iconda/06059020143.pdf.
(29) UBS AG. Average useful life of building sections. Zurich. www.ubs.com/hypo.
(30) Arizona School Facilities Board, Arizona Gov. Average life Cycle of Building Components. http://www.azsfb.gov/sfb/preventive%20maintenance/life%20expectancies.xls.
(31) University of Florida. (2010). Life Cycle Cost for Materials and Building Systems for Florida's Public Educational Facilities. http://www.fldoe.org/edfacil/pdf/lccgmbsfpef.pdf.
(32) Hong, T., Kim, J., Koo, C. (2012). LCC and LCCO2 analysis of green roofs in elementary schools with energy saving measures. Energy and Buildings, 45: 229-239, doi: http://dx.doi.org/10.1016/j.enbuild.2011.11.006. http://dx.doi.org/10.1016/j.enbuild.2011.11.006
(33) Chong, W.T., Naghavi, M. S., Poh, S. C., Mahlia, T. M. I., Pan, K. C. (2011). Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application. Applied Energy, 88(11): 4067-4077. http://dx.doi.org/10.1016/j.apenergy.2011.04.042
(34) Marszal, A.J., Heiselberg, P. (2011). Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark. Energy, 36(9): 5600-5609. http://dx.doi.org/10.1016/j.energy.2011.07.010
(35) Uygunoglu, T., Kecebas, A. (2011). LCC analysis for energy-saving in residential buildings with different types of construction masonry blocks. Energy and Buildings, 43(9): 2077-2085. http://dx.doi.org/10.1016/j.enbuild.2011.04.011
(36) Schade, J. (2007). Life cycle cost calculation models for buildings. InPro (Open Information Environment for Knowledge- Based Collaborative Processes throughout the Lifecycle of a Building). http://www.inpro-project.eu/media/lcc_juttaschade.pdf.
(37) Davis Langdon Management Consulting. (2007, mayo). Life cycle costing (LCC) as a contribution to sustainable construction: a common methodology, (p. 82). http://ec.europa.eu/enterprise/sectors/construction/competitiveness/lifecycle-
(38) European Commission. (2004). Buying Green! A handbook on environmental public procurement. http://ec.europa.eu/environment/gpp/pdf/buying_green_handbook_en.pdf.
(39) Commission of the European Communities. (2008). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0400:FIN:EN:PDF
(40) Öko-Institut e.V. (2007). Costs and benefits of Green Procurement in Europe. Freiburg. http://ec.europa.eu/environment/gpp/pdf/eu_recommendations.pdf.
(41) IISD. (2010, septiembre). Procuring Green in the Public Sector: A check-list pfor getting started. International Institute for Sustainable Development. http://www.iisd.org/pdf/2011/procuring_green_public_sector.pdf.
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.