El análisis del coste del ciclo de vida como herramienta para la evaluación económica de la edificación sostenible. Estado de la cuestión

Autores/as

  • F. García-Erviti E.T.S. Arquitectura - Universidad Politécnica de Madrid
  • J. Armengot-Paradinas E.T.S. Arquitectura - Universidad Politécnica de Madrid
  • G. Ramírez-Pacheco E.T.S. Arquitectura - Universidad Politécnica de Madrid

DOI:

https://doi.org/10.3989/ic.12.119

Palabras clave:

Coste del ciclo de vida, evaluación, viabilidad económica, contratación pública sostenible

Resumen


El presente trabajo expone el estado actual de la cuestión en referencia al análisis del coste del ciclo de vida (CCV) aplicado a la edificación. Las diferentes metodologías desarrolladas en torno a este concepto constituye una herramienta destinada a la evaluación de las distintas opciones de proyecto desde una perspectiva de eficiencia económica medioambientalmente sostenible. Basado en la obtención del valor actual de los costes y beneficios futuros asociados a las decisiones del proceso de edificación, el análisis CCV representa un cambio de paradigma: opone una visión a largo plazo frente a la perspectiva tradicional que aspira a la obtención de una rentabilidad inmediata con una mínima inversión inicial, ignorando sus efectos económicos y medioambientales futuros. El objetivo del artículo es la revisión de la metodología CCV y su implantación en un contexto global, analizando su proceso de desarrollo y los criterios de discusión de resultados. Se concluye con un estudio crítico de las posibilidades de adaptación del método a la estructura del sector inmobiliario español, proponiendo su integración en un sistema de contratación pública sostenible.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Lützkendorf, T. (2010). Sustainable properties – dream or trend?. Informes de la Construcción, 62(517): 5-22.

(2) WCED. (1987). Our common future. Report of the World Commission on Environment and Development. UK: Oxford University Press.

(3) Gluch, P., Baumann, H. (2004). The life cycle costing (LCC) approach: a conceptual discussion of its usefulness for environmental decision-making. Building and Environment, 39(5): 571-580. http://dx.doi.org/10.1016/j.buildenv.2003.10.008

(4) Klöpffer, W., Ciroth, A. (2011). Is LCC relevant in a sustainability assessment?. International Journal of Life Cycle Assessment, 16(2): 99-101. http://dx.doi.org/10.1007/s11367-011-0249-y

(5) Jørgensen, A., Hermann, I. T., Birk-Mortensen, J. (2010). Is LCC relevant in a sustainability assessment? Int J Life Cycle Assess, 15(6):531-532. http://dx.doi.org/10.1007/s11367-010-0185-2

(6) SMART SPP. (junio, 2011). Innovation through sustainable procurement. Tool for calculating Life-Cycle Costs and CO2 Emissions of products. http://www.smart-spp.eu/index.php?id=7633.

(7) CILECCTA - Construction Industry LifE Cycle CosT Analysis. http://www.cileccta.eu/.

(8) Departament of Industry-Comitte for Terotechnology. (1977). Life cycle costing in the management of assets : a practical guide. London: H.M. Stationery Office.

(9) Ruegg, R., McConnaughey, J. S., Thomas-Sav, G., Hockenbery, K. A. (1978). Life-Cycle Costing: A guide for selecting energy conservation projects for public buildings. Building Science Series, 113. Washington, D.C: National Bureau of Standards. http://dx.doi.org/10.6028/NBS.BSS.113

(10) Fuller, S.K., Petersen, S.R. (1995). Life-Cycle Costing Manual for the Federal Energy Management Program. Washington, DC: U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology.

(11) Rushing, A. S., Kneifel, J. D., Lippiatt, B. C. (2010, mayo). Handbook 135 and NBS Special Publication 709. Nacional Institute of Standards and Technology.

(12) Education Support Services/Facilities. (1999). Life Cycle Cost Analysis Handbook (1st Edition). State of Alaska: Department of Education & Early Development. http://www.eed.state.ak.us/facilities/publications/LCCAHandbook1999.pdf.

(13) Australian National Audit Office. (2001, diciembre). Life Cycle Costing. Better Practice Guide. http://www.anao.gov.au/uploads/documents/Life_Cycle_Costing.pdf.

(14) Kirkham, R., Alisa, M., Pimenta-da Silva, A., Grindley, T., Brondsted, J. (2004, septiembre). EUROLIFEFORM: An integrated probabilistic whole life cycle cost and performance model for buildings and civil infrastructure. RICS Foundation,

(15) Task Group 4. (2003, julio). Life-Cycle Cost in Construction. Final Report. UE: 3rd Tripartite Meeting Group on the Competitiveness of the Construction Industry. http://www.gci-uicp.eu/Documents/Reports/LCC%20FINAL%20REPORT-2.pdf.

(16) Davis Langdon Management Consulting. (2007, mayo). Life cycle costing (LCC) as a contribution to sustainable construction: a common methodology. Final Report. http://ec.europa.eu/enterprise/sectors/construction/competitiveness/ life-cycle-costing/index_en.htm.

(17) Norwegian Standard Classification System. (2013). NS 3454:2013. Livssykluskostnader for byggverk - Prinsipper ogstruktur. Noruega.

(18) ISO. (2008). ISO 15686-5:2008(E) Buildings and constructed assets — Service-life planning — Part 5: Life-cycle costing. International Organization for Standardization.

(19) BCIS .(2008). Standardized Method of Life Cycle Costing for Construction Procurement. A supplement to ISO 15686-5:2008 Buildings and constructed assets – Service life planning – Part 5: Life cycle costing. Building Cost Information Service.

(20) InPro Building (Open Information Environment for collaborative Processes throughout the lifecycle of a building). Report– The InPro Lifecycle Design Framework for Buildings. http://www.inpro-project.eu/main.asp

(21) Davis Langdon. (2010, 19 de enero). Development of a Promotional campaign for Life-Cycle Costing in Construction. Final Report. http://ec.europa.eu/enterprise/sectors/construction/files/compet/life_cycle_costing/100119_development_of_a_promotional_campaign_en.pdf.

(22) UNEP. (2011). Towards a Lyfe Cycle Sustainability Assessment. United Nations Environment Program.

(23) CEN-AFNOR. CEN/TC 350 Sustainability of construction works. EN 15643. Sustainability assessment of buildings.

(24) AEN/CTN 198:9. (2011). UNE-EN 15643-1:2011 Sostenibilidad en la construcción. Evaluación de la sostenibilidad de los edificios.

(25) González-Méndez, J.J., Robles-Urquijo, I. (2010, marzo). CILECCTA. Herramientas de análisis de ciclo de vida, costes y opciones. En SB10mad Sustainable Building Conference. Congreso Internacional sobre Edificación sostenible. Madrid.

(26) Fawcett, W., Hughes, M., Hannes, K., Albrcht, S., Vennström, A. (2012). Flexible strategies for long-term sustainability under uncertaint. Building Research & Information, 40(6): 545-557. http://dx.doi.org/10.1080/09613218.2012.702565

(27) CEN. (2007). CEN/TC 228 - Heating systems in buildings. EN 15459:2007. Energy performance of buildings - Economic evaluation procedure for energy systems in buildings.

(28) Hovde, P.J. (2005, 17-20 de abril). The Factor Method – A simple tool to service life estimation. En 10DBMC International Conference On Durability of Building Materials an Component. Lyon. http://www.irbdirekt.de/daten/iconda/06059020143.pdf.

(29) UBS AG. Average useful life of building sections. Zurich. www.ubs.com/hypo.

(30) Arizona School Facilities Board, Arizona Gov. Average life Cycle of Building Components. http://www.azsfb.gov/sfb/preventive%20maintenance/life%20expectancies.xls.

(31) University of Florida. (2010). Life Cycle Cost for Materials and Building Systems for Florida's Public Educational Facilities. http://www.fldoe.org/edfacil/pdf/lccgmbsfpef.pdf.

(32) Hong, T., Kim, J., Koo, C. (2012). LCC and LCCO2 analysis of green roofs in elementary schools with energy saving measures. Energy and Buildings, 45: 229-239, doi: http://dx.doi.org/10.1016/j.enbuild.2011.11.006. http://dx.doi.org/10.1016/j.enbuild.2011.11.006

(33) Chong, W.T., Naghavi, M. S., Poh, S. C., Mahlia, T. M. I., Pan, K. C. (2011). Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application. Applied Energy, 88(11): 4067-4077. http://dx.doi.org/10.1016/j.apenergy.2011.04.042

(34) Marszal, A.J., Heiselberg, P. (2011). Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark. Energy, 36(9): 5600-5609. http://dx.doi.org/10.1016/j.energy.2011.07.010

(35) Uygunoglu, T., Kecebas, A. (2011). LCC analysis for energy-saving in residential buildings with different types of construction masonry blocks. Energy and Buildings, 43(9): 2077-2085. http://dx.doi.org/10.1016/j.enbuild.2011.04.011

(36) Schade, J. (2007). Life cycle cost calculation models for buildings. InPro (Open Information Environment for Knowledge- Based Collaborative Processes throughout the Lifecycle of a Building). http://www.inpro-project.eu/media/lcc_juttaschade.pdf.

(37) Davis Langdon Management Consulting. (2007, mayo). Life cycle costing (LCC) as a contribution to sustainable construction: a common methodology, (p. 82). http://ec.europa.eu/enterprise/sectors/construction/competitiveness/lifecycle-

(38) European Commission. (2004). Buying Green! A handbook on environmental public procurement. http://ec.europa.eu/environment/gpp/pdf/buying_green_handbook_en.pdf.

(39) Commission of the European Communities. (2008). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0400:FIN:EN:PDF

(40) Öko-Institut e.V. (2007). Costs and benefits of Green Procurement in Europe. Freiburg. http://ec.europa.eu/environment/gpp/pdf/eu_recommendations.pdf.

(41) IISD. (2010, septiembre). Procuring Green in the Public Sector: A check-list pfor getting started. International Institute for Sustainable Development. http://www.iisd.org/pdf/2011/procuring_green_public_sector.pdf.

Publicado

2015-03-30

Cómo citar

García-Erviti, F., Armengot-Paradinas, J., & Ramírez-Pacheco, G. (2015). El análisis del coste del ciclo de vida como herramienta para la evaluación económica de la edificación sostenible. Estado de la cuestión. Informes De La Construcción, 67(537), e056. https://doi.org/10.3989/ic.12.119

Número

Sección

Artículos