Passive strategies for energy optimisation of social housing in the Mediterranean climate

Authors

  • R. Suárez IUACC, Escuela Técnica Superior de Arquitectura - Universidad de Sevilla
  • J. Fragoso IUACC, Escuela Técnica Superior de Arquitectura - Universidad de Sevilla

DOI:

https://doi.org/10.3989/ic.15.4678

Keywords:

Energy efficiency, Nearly Zero Energy Building (NZEB), comfort, passive systems, social housing

Abstract


The main goals of Horizon 2020 have led to the updating of the Basic Document on Energy Saving of the Technical Building Code in 2013. The demands of the new model, based on technological and construction parameters, are associated with a more extensive assessment of the architectural conditions of buildings. This study aims to analyse the repercussion of the new regulations on Mediterranean social housing in climate zone B4. It proposes energy analysis on a basic model of a single linear block, adding different individual passive strategies relating to compactness, envelope material, solar control, solar accumulation and ventilation, analysing the improvement in energy demand, energy rating and indoor comfort. The main energy improvement actions used take into account orientation as well as the combined improvement in energy performance of the thermal envelope, ventilation rate and suitable solar protection. These lead to major reductions in energy demand and CO2 emissions while improving indoor comfort conditions.

Downloads

Download data is not yet available.

References

(1) Presidencia de Gobierno. (1979, 22 de octubre). Real Decreto 2429/1979, de 6 de julio, por el que se aprueba la norma básica de edificación NBE-CT-79, sobre condiciones térmicas en los edificios. Boletín Oficial del Estado, nº 253, pp. 24524-24550. España.

(2) Ministerio de Vivienda. (2006, 28 de marzo). Real Decreto 314/2006 de 17 de marzo. Código Técnico de la Edificación. Boletín Oficial del Estado, nº74, pp. 11816-11831.

(3) Ministerio de Fomento. (2013, 10 de septiembre). Orden FOM/1635/2013, de 10 de septiembre, por la que se actualiza el Documento Básico DB-HE «Ahorro de Energía», del Código Técnico de la Edificación. Boletín Oficial del Estado, nº219, pp. 67137-67209.

(4) Garcia-Hooghuis, A., Neila, F.J. (2013). Modelos de transposición de las Directivas 2002/91/CE y 2010/31/UE "Energy Performance Building Directive" en los Estados miembros dela UE. Consecuencias e implicaciones. Informes de la Construcción, 65(531): 289-300. http://dx.doi.org/10.3989/ic.12.017

(5) Holl, M. (2010, 15-16 de noviembre). The new EPBD and its policy towards nearly zero energy buildings. En SBN Conference. París.

(6) Ábalos, I. (2008). La belleza termodinámica. Circo, 157.

(7) Balaras, C. A., Gaglia, A. A., Georgopoulou, E., Mirasgedis, S., Sarafidis, Y., Lalas, D. L. (2007). European residential buildings and empirical assessment of the Hellenic building stock, energy consumption, emissions and potential energy savings. Building and Environment, 42(3): 1298-1314. http://dx.doi.org/10.1016/j.buildenv.2005.11.001

(8) Jaber, S., Ajib, S. (2011). Optimum, technical and energy efficiency design of residential building in Mediterranean región. Energy and Buildings, 43(8): 1829-1834. http://dx.doi.org/10.1016/j.enbuild.2011.03.024

(9) Domínguez, S., Sendra, J. J., León, A.L., Esquivias, P. (2012). Towards energy demand reduction in social housing buildings: Envelope system optimization strategies. Energies, 5(7): 2263-2287. http://dx.doi.org/10.3390/en5072263

(10) Aste, N., Angelotti, A., Buzzetti, M. (2009). The influence of external walls thermal inertia on the energy performance of well insulated buildings. Energy & Buildings, 41(11): 1181-1187. http://dx.doi.org/10.1016/j.enbuild.2009.06.005

(11) Al-Sanea, S.A., Zedan, M.F. (2012). Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Applied Energy, 89(1): 430-442. http://dx.doi.org/10.1016/j.apenergy.2011.08.009

(12) Stazi, F., Bonfigli, C., Tomassoni, E., di Perna, C., Munafò, P. (2015). The effect of high thermal insulation on high thermal mass: Is the dynamic behavior of traditional envelopes in Mediterranean climates still possible? Energy and Buildings, 88: 367-383. http://dx.doi.org/10.1016/j.enbuild.2014.11.056

(13) León, A.L., Domínguez, S., Campano, M.A., Ramírez-Balas, C. (2012). Improving by solar protections of the Energy demand of multi dwelling units in Mediterranean climate. Energies, 5(9): 3398-3424. http://dx.doi.org/10.3390/en5093398

(14) Sendra, J. J., Domínguez, S., León, A. L. (2011). Proyecto Efficacia. Optimización Energética en la vivienda colectiva (pp. 1-140). Sevilla: Publicaciones Universidad de Sevilla.

(15) Santamouris, M., Kolokotsa, D. (2013). Passive cooling dissipation techniques for buildings and other structures: The state of the art. Energy and Buildings, 57: 74-94. http://dx.doi.org/10.1016/j.enbuild.2012.11.002

(16) Sendra, J.J., Domínguez, S., Bustamante, P., León, A.L. (2013). Energy intervention in the residential sector in the south of Spain: Current challenges. Informes de la Construcción, 65(532): 457-464. http://dx.doi.org/10.3989/ic.13.074

(17) Zero Carbon Hub. (2010). Closing the gap between designed and built performance. http://www.zerocarbonhub.org. London.

(18) Sunikka-Blank, M., Galvin, R. (2012). Introducing the prebound effect: the gap between performance and actual energy consumption. Building Research and Information, 40(3): 260-273. http://dx.doi.org/10.1080/09613218.2012.690952

(19) Sakka, A.; Santamouris, M.; Livada, I.; Nicol, F.; Wilson, M.(2012). On the thermal performance of low income housing during heat waves. Energy and Buildings, 49, 69-77. http://dx.doi.org/10.1016/j.enbuild.2012.01.023

(20) Mihalakakou, G., Santamouris, M., Tsangrassoulis, A. (2002). On the energy consumption in residential buildings. Energy and Buildings, 34(7): 727-736. http://dx.doi.org/10.1016/S0378-7788(01)00137-2

(21) Van Hoof, J., Hensen, L. M. (2007). Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones. Building and Environment, 42(1): 156-170. http://dx.doi.org/10.1016/j.buildenv.2005.08.023

(22) Ferrari, S., Zanotto, V. (2012). Adaptive Comfort: analysis and application of the main indices. Building and Environment, 49: 25-32. http://dx.doi.org/10.1016/j.buildenv.2011.08.022

(23) García-Navarro, J., González-Díaz, M. J., Valdivieso, M. (2014). «Estudio Precost&e»: evaluación de los costes constructivos y consumos energéticos derivados de la calificación energética en un edificio de viviendas situado en Madrid. Informes de la Construcción, 66(535): e026. http://dx.doi.org/10.3989/ic.13.052

(24) Ministerio de Fomento. (2013). Report on Cost Optimal Calculations and Comparison with the current and future Energy Performance Requeriments of Buildindings in Spain. Madrid.

(25) IDAE. (2009). Condiciones de Aceptación de procedimientos alternativos a LIDER y CALENER. Madrid: Instituto para la Diversificación y Ahorro de la Energía, Ministerio de Industria, Turismo y Comercio.

(26) DesignBuilder versión 2.4.2.026. http://www.designbuilder.co.uk/

(27) Ruá, M. J., López-Mesa, B. (2012). Certificación energética de edificios en España y sus implicaciones económicas. Informes de la Construcción, 64(527): 307-318. http://dx.doi.org/10.3989/ic.11.028

(28) Legifrance. (2006, 25 de mayo). Arrêté du 24 mai 2006 relatif aux caractéristiques thermiques des bâtiments nouveaux et des parties nouvelles de bâtiments. JORF, n°121, Article 20.

Published

2016-03-30

How to Cite

Suárez, R., & Fragoso, J. (2016). Passive strategies for energy optimisation of social housing in the Mediterranean climate. Informes De La Construcción, 68(541), e136. https://doi.org/10.3989/ic.15.4678

Issue

Section

Research Articles