The spatial module as environmental conditioning element: the Spanish pavilion by Corrales and Molezun
DOI:
https://doi.org/10.3989/ic.16.133Keywords:
environmental conditioning, modular serialization, energy efficiency, natural lighting, comfort, passive systemsAbstract
In the 50s a review of Modern Movement, which assimilates modular serialization and a connection with the environmental context, although with remote premises of the contemporary paradigms of sustainability arise. In this context, within national stage, stands out the Spanish pavilion at the Brussels International Exhibition in 1958 by Corrales and Molezún. This work seeks a quantitatively reveal of the environmental performance of the pavilion in its two locations and settings, in Brussels and Madrid, through simulation and analysis of energy and lighting models which reproduces the characteristic of the pavilion with the purpose of contributing to give a new critical point of view, valuing the module efficiency to adapt to different environmental conditions. The completed analysis reveals the influence of the climate, compactness and orientation, as in the difficulties associated with thermal comfort and natural light when glazing percentage are important and there are high solar radiation settings.
Downloads
References
(1) Risselada, M., et al. (2011). Alison & Peter Smithson: a critical anthology, Barcelona: Polígrafa.
(2) Cassinello, P. (2008). Eduardo Torroja y la industrialización de la "machine à habiter" 1949-1961. Informes de la Construcción, 60(512): 5-18. https://doi.org/10.3989/ic.08.031
(3) Gideon, S. (1978). La mecanización toma el mando, Barcelona: Gustavo Gili.
(4) Tafuri, M. (1997). Teoría e historia de la arquitectura, Barcelona: Laia.
(5) Olgyay, V. (1963). Design with Climate: Bioclimatic Approach to Architectural Regionalism, Princeton: Princeton University Press.
(6) Banham, R. (1969). The architecture of the well-tempered environment, London: Architectural Press. PMCid:PMC1982260
(7) Porteous, C. (2002). The New eco-Architecture: Alternatives from the Modern Movement, London: Spon Press.
(8) Hawkes, D. (2012). Architecture and Climate: An Environmental History of British Architecture, 1600 – 2000, New York: Routledge.
(9) Cole, R. J. (2012). Accommodating the British climate. Building Research & Information, 40(5): 638-642. https://doi.org/10.1080/09613218.2012.711992
(10) Wadel, G., Avellaneda, J., Cuchí, A. (2010). La sostenibilidad en la arquitectura industrializada: cerrando el ciclo de los materiales. Informes de la Construcción, 62(517): 37-51. https://doi.org/10.3989/ic.09.067
(11) Requena-Ruiz, I. (2012). Bioclimatism in the Architecture of Le Corbusier: The Millowners Association Building. Informes de la Construcción, 64 (528): 549-562. https://doi.org/10.3989/ic.11.121
(12) Ramírez, C., Nieto, E., Narbona, G., Sendra, J. J., Suárez, R. (2015). Numerical simulation of the temperature evolution in a room with a mur neutralisant. Application to "The City of Refuge" by Le Corbusier. Energy & Buildings, 86: 708-722. https://doi.org/10.1016/j.enbuild.2014.10.032
(13) Escandón, R., Suárez, R., Sendra, J. J.(2015). Energy and climate simulation in the Upper Lawn Pavilion, an experimental laboratory in the architecture of the Smithsons. Building Simulation. 8(1): 99-109. https://doi.org/10.1007/s12273-014-0197-0
(14) Moneo, R. (1993). Optimismo racionalista. Arquitectura Viva, 28: 72-73.
(15) AA.VV. (2004). Corrales y Molezún. Pabellón de España en la Exposición Universal de Bruselas 1958, Madrid 1959, p. 25, Arquitecturas ausentes del siglo XX. Madrid.
(16) Cánovas, A. (Eds.) (2005). Pabellón de Bruselas '58: Corrales y Molezún. Madrid: Ministerio de la Vivienda.
(17) Fernández del Amo, J. L. (1969). Nuevo Pabellón del Ministerio de Agricultura en la Feria Internacional del Campo, Madrid. Arquitectura, 121: 61.
(18) Corrales, J. A., Molezún, R. (2005). Memoria general. En Cánovas, A. (Eds.) Pabellón de Bruselas '58: Corrales y Molezún. Madrid: Ministerio de la Vivienda.
(19) Clarke, J., Janak, M. (1998). Simulating the thermal effects of daylight controlled lighting. Building Performance (BEPAC UK), Issue 1.
(20) Franzetti, C., Fraisse, G., Achard, G. (2004). Influence of the coupling between daylight and artificial lighting on thermal loads in office buildings. Energy and Buildings 36(2): 117-126. https://doi.org/10.1016/j.enbuild.2003.10.005
(21) Hviid, C. A., Nielsen, T. R., Svendsen, S. (2008). Simple tool to evaluate the impact of daylight on building energy consumption. Solar Energy, 82(9): 787-798. https://doi.org/10.1016/j.solener.2008.03.001
(22) Autodesk Ecotect Analysis [versión 5.6]. https://www.autodesk.com.
(23) Daylight Visualizer. http://viz.velux.com/.
(24) Acosta, I., Mu-oz, M., Esquivias, P., Moreno, D., Navarro, J. (2015). Analysis of the accurancy of sky component calculation in daylighting simulation programs. Solar Energy, 119: 54-67. https://doi.org/10.1016/j.solener.2015.06.022
(25) DesignBuilder [versión 2.3.6.005]. https://www.designbuilder.co.uk/.
(26) Moon, P., Spencer, D. E. (1942). Illumination form a non-uniform sky. Illum. Eng., 37: 707-726.
(27) Reinhart, C. F., Mardaljevic, J., Rogers, Z. (2006). Dynamic Daylight Performance Metrics for Sustainable Building Design. LEUKOS, 3(1): 7-31.
(28) Reinhart, C. F., Wienold, J. (2011). The day lighting dashboard. A simulation-based design analysis for daylit spaces. Building and Environment, 46: 386-396. https://doi.org/10.1016/j.buildenv.2010.08.001
(29) Reinhart, C., Walkenhorst, O. (2001). Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy & Buildings, 33: 683-697. https://doi.org/10.1016/S0378-7788(01)00058-5
(30) Nabil, A., Mardaljevic, J. (2005). Useful Daylight Illuminance: A New Paradigm to Access Daylight in Buildings. Lighting Research Technology, 37: 41-59. https://doi.org/10.1191/1365782805li128oa
(31) De Dear, R. J., Brager, G. S. (1997). ASHRAE RP-884 Final Report: developing an adaptive model of thermal comfort and preference. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. PMid:9195861
(32) Tzempelikos, A., Athienitis, A. K. (2007). The impact of shading design and control on building cooling and lighting demand. Solar Energy, 81(3): 369-382. https://doi.org/10.1016/j.solener.2006.06.015
(33) Baker, N., Steemers, K. (2002). Daylight. Design of Buildings. London: James&James.
(34) AENOR (2012). UNE-EN 12464-1:2012 Iluminación. Iluminación de los lugares de trabajo. Parte 1: Lugares de trabajo en interiores. Asociación Española de Normalización (AENOR).
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.