Adiabatic box designed to minimize the thermal bridge of a thermoelectrical system
DOI:
https://doi.org/10.3989/ic.74303Keywords:
Peltier, heating, prototype, thermal bridge, architectureAbstract
The authors of the article work on the integration of thermoelectricity in facades since 2009. The purpose of this article is to review the possibilities that this technology offers for its incorporation as a building air conditioning system, focusing on the description and analysis of the behaviour of the last prototype made within a research project. For this, the design criteria and the necessary components for its assembly are described, in this aspect the reduction of the thermal bridge with respect to previous prototypes has been especially important. The experimental methodology followed, and the tests performed are explained, critically analysing the results. The conclusions raise improvements and recommendations to implement in future developments.
Downloads
References
(1) Huang, H.-S., Weng, Y.-C., Chang, Y.-W., Chen, S.-L., & Ke, M.-T. (2010). Thermoelectric water-cooling device applied to electronic equipment. International Communications in Heat and Mass Transfer, 37(2), 140-146. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.012
(2) Donaldson, P. (2015). Batteries, fuel cells, and alternative energy sources for military vehicles. Zeitschriftenaufsatz.
(3) Yang, J., & Stabler, F. R. (2009). Automotive Applications of Thermoelectric Materials. Journal of Electronic Materials, 38(7), 1245-1251. https://doi.org/10.1007/s11664-009-0680-z
(4) Riffat, S.., & Ma, X. (2003). Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 23(8), 913-935. https://doi.org/10.1016/S1359-4311(03)00012-7
(5) Hamid Elsheikh, M., Shnawah, D. A., Sabri, M. F. M., Said, S. B. M., Haji Hassan, M., Ali Bashir, M. B., & Mohamad, M. (2014a). A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 30, 337-355. https://doi.org/10.1016/j.rser.2013.10.027
(6) Cold case - the future of refrigerant gas. (2017). CIBSE Journal, 2017.
(7) IEA SHC Task 41 Solar energy and Architecture. (2014). Solar Energy Systems in Architecture, Integration Criteria and Guidelines.
(8) Gayner, C., & Kar, K. K. (2016). Recent advances in thermoelectric materials. Progress in Materials Science, 83, 330-382. https://doi.org/10.1016/j.pmatsci.2016.07.002
(9) Zuazua-Ros, A., Martín-Gómez, C., Ibañez-Puy, E., Vidaurre-Arbizu, M., & Gelbstein, Y. (2019a). Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications. Renewable Energy, 131, 229-239. https://doi.org/10.1016/j.renene.2018.07.027
(10) Riffat, S. ., & Qiu, G. (2004). Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners. Applied Thermal Engineering, 24(14-15), 1979-1993. https://doi.org/10.1016/j.applthermaleng.2004.02.010
(11) Martin-Gomez, C., Ibanez-Puy, M., Bermejo-Busto, J., Sacristán Fernández, J. A., Carlos Ramos, J., & Rivas, A. (2016). Thermoelectric cooling heating unit prototype. Building Services Engineering Research & Technology, 37(4), 431-449. https://doi.org/10.1177/0143624415615533
(12) Martín-Gómez, C. (2011). Módulo prefabricado de fachada para climatización de espacios habitables mediante climatización termoeléctrica. 201101142.
(13) Ibáñez-Puy, M., Bermejo-Busto, J., Martín-Gómez, C., Vidaurre-Arbizu, M., & Sacristán-Fernández, J. A. (2017). Thermoelectric cooling heating unit performance under real conditions. Applied Energy, 200, 303-314. https://doi.org/10.1016/j.apenergy.2017.05.020
(14) Ibañez-Puy, E., Martín-Gómez, C., Bermejo-Busto, J., & Zuazua-Ros, A. (2018b). Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box. Applied Energy, 228, 681-688. https://doi.org/10.1016/j.apenergy.2018.06.097
(15) Aksamija, A., Aksamija, Z., Counihan, C., Brown, D., & Upadhyaya, M. (2019). Experimental Study of Operating Conditions and Integration of Thermoelectric Materials in Facade Systems. Frontiers in Energy Research, 7, 6. https://doi.org/10.3389/fenrg.2019.00006
(16) Araiz, M., Catalan, L., Herrero, O., Pérez, G., & Rodríguez, A. (2018). The importance of the assembly in thermoelectric generators. Bringing Thermoelectricity into Reality. https://doi.org/10.5772/intechopen.75697
(17) Martín-Gómez, C., Del Valle de Lersundi, K., Zuazua-Ros, A., Sacristán, J.A., Ibañez-Puy, M. & Pereda López, J.J. (2019) Desarrollo constructivo de un prototipo de fachada termoeléctrico ubicado en la Base Antártica Gabriel de Castilla. VII Congreso Nacional de I+D en Defensa y Seguridad, San Fernando, Cádiz.
(18) Zhang, H. Y., Mui, Y. C. & Tarin, M. (2010). Analysis of thermoelectric cooler performance for high power electronic packages. Applied Thermal Engineering, 30, 561-568. https://doi.org/10.1016/j.applthermaleng.2009.10.020
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Gobierno de Navarra
Grant numbers 0011-1365-2018-000211
European Regional Development Fund
Grant numbers 0011-1365-2018-000211