Análisis de la influencia del coeficiente de transferencia de calor en la caracterización de la transmitancia térmica de fachadas con el método termométrico

Autores/as

DOI:

https://doi.org/10.3989/ic.82602

Palabras clave:

transmitancia térmica, fachadas, método termométrico, coeficiente de transferencia de calor, ensayo

Resumen


Caracterizar la transmitancia térmica de fachadas es uno de los pasos más importantes en los trabajos de auditoría energética. Para ello, existe una amplia variedad de métodos experimentales. Uno de los métodos de mayor utilización es el método termométrico. Sin embargo, existe una brecha de conocimiento en relación con el planteamiento de análisis de datos. Por este motivo, en este estudio se analizó la viabilidad de utilizar diferentes planteamientos para el método termométrico. Para ello, se analizaron 20 fachadas y se plantearon 9 formulaciones diferentes utilizando aproximaciones para el coeficiente total de transferencia de calor existentes en la literatura científica. Asimismo, se evaluaron dos planteamientos de análisis de datos (media aritmética de las medidas instantáneas, y media del sumatorio del numerador y del denominador), así como el filtrado de datos necesario de aplicar. Los resultados permitieron determinar la configuración de análisis más adecuada para aplicar el método.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) European Commission. (2011). A Roadmap for moving to a competitive low carbon economy in 2050.

(2) European Environment Agency. (2017). Final energy consumption by sector and fuel (2017). Recuperado de http://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-9/assessment-1.

(3) European Commission. (2006). Action Plan for Energy Efficiency: Realising the Potential.

(4) Pérez-Lombard, L., Ortiz, J., y Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40, 394-398. https://doi.org/10.1016/j.enbuild.2007.03.007

(5) United Nations Environment Programme. (2012). Building Design and Construction: Forging Resource Efficiency and Sustainable Development.

(6) Aksoy, U. T., y Inalli, M. (2006). Impacts of some building passive design parameters on heating demand for a cold region. Building and Environment, 41, 1742-1754. https://doi.org/10.1016/j.buildenv.2005.07.011

(7) De Lieto Vollaro, R., Guattari, C., Evangelisti, L., Battista, G., Carnielo, E. y Gori, P. (2015). Building energy performance analysis: A case study. Energy and Buildings, 87, 87-94. https://doi.org/10.1016/j.enbuild.2014.10.080

(8) Escorcia, O., García, R. Trebilcock, M., Celis, F. y Bruscato, U. (2012). Envelope improvements for energy efficiency of homes in the south-central Chile. Informes de La Construcción. 64, 563-574. https://doi.org/10.3989/ic.11.143

(9) Friedman, C., Becker, N. y Erell, E. (2014). Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis, Energy, 77, 183-193.

(10) Gugliermetti, F. y Bisegna, F. (2007). Saving energy in residential buildings: The use of fully reversible windows. Energy, 32, 1235-1247. https://doi.org/10.1016/j.energy.2006.08.004

(11) Pisello, A. L., Rossi, F. y Cotana, F. (2014). Summer and winter effect of innovative cool roof tiles on the dynamic thermal behavior of buildings. Energies, 7, 2343-2361. https://doi.org/10.3390/en7042343

(12) Adhikari, R., Lucchi, E. y Pracchi, V. (2012). Experimental measurements on thermal transmittance of the opaque vertical walls in the historical buildings. Trabajo presentado en PLEA2012 - 28th Conference, Opportunities, Limits & Needs Towards an environmentally responsible architecture, Lima, Perú.

(13) Filippín, C. y Flores Larsen, S. (2005). Comportamiento térmico de invierno de una vivienda convencional en condiciones reales de uso. Avances En Energías Renovables y Medio Ambiente, 9, 67-72.

(14) Oral, G. K. y Yilmaz, Z. (2002). The limit U values for building envelope related to building form in temperate and cold climatic zones. Building and Environment, 37, 1173-1180. https://doi.org/10.1016/S0360-1323(01)00102-0

(15) Prada, A.,Cappelletti, F., Baggio, P. y Gasparella, A. (2014). On the effect of material uncertainties in envelope heat transfer simulations. Energy and Buildings, 71, 53-60. https://doi.org/10.1016/j.enbuild.2013.11.083

(16) Bustamante, W., Bobadilla, A., Navarrete, B., Saelzer, G. y Vidal, S. (2005). Uso eficiente de la energía en edificios habitacionales. Mejoramiento térmico de muros de albañilería de ladrillos cerámicos. El caso de Chile. Revista de la Construcción, 4, 5-12.

(17) Melo, A. P., Barcelos, M. M. y Folle, D. (2015). Análise térmica e energética da aplicação de isolante térmico em fachadas e cobertura de um edifício comercial. Revista de Engenharia Civil IMED, 2, 40-49. https://doi.org/10.18256/2358-6508/rec-imed.v2n1p40-49

(18) Bienvenido-Huertas, D., Rodríguez-Álvaro, R., Moyano, J. J., Rico, F. y Marín, D. (2018). Determining the U-Value of Façades Using the Thermometric Method: Potentials and Limitations. Energies, 11, 1-17. https://doi.org/10.3390/en11020360

(19) Cesaratto, P. G., De Carli, M. y Marinetti, S. (2011). Effect of different parameters on the in situ thermal conductance evaluation. Energy and Buildings, 43, 1792-1801. https://doi.org/10.1016/j.enbuild.2011.03.021

(20) Cucumo, M., Ferraro, V., Kaliakatsos, D. y Mele, M. (2018). On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings. Energy and Buildings, 158, 677-683. https://doi.org/10.1016/j.enbuild.2017.10.034

(21) Cucumo, M., De Rosa, A., Ferraro, V., Kaliakatsos, D. y Marinelli, V. (2006). A method for the experimental evaluation in situ of the wall conductance. Energy and Buildings, 38, 238-244. https://doi.org/10.1016/j.enbuild.2005.06.005

(22) Desogus, G., Mura, S. y Ricciu, R. (2011). Comparing different approaches to in situ measurement of building components thermal resistance. Energy and Buildings, 43, 2613-2620. https://doi.org/10.1016/j.enbuild.2011.05.025

(23) Meng, X., Yan, B., Gao, Y., Wang, J., Zhang, W. y Long, W. (2015). Factors affecting the in situ measurement accuracy of the wall heat transfer coefficient using the heat flow meter method. Energy and Buildings, 86, 754-765. https://doi.org/10.1016/j.enbuild.2014.11.005

(24) Peng, C. y Wu, Z. (2008). In situ measuring and evaluating the thermal resistance of building construction. Energy and Buildings, 40, 2076-2082. https://doi.org/10.1016/j.enbuild.2008.05.012

(25) Trethowen, H. (1986). Measurement errors with surface-mounted heat flux sensors. Building and Environment, 21, 41-56. https://doi.org/10.1016/0360-1323(86)90007-7

(26) Andújar Márquez, J. M., Martínez Bohórquez, M. A. y Gómez Melgar, S. (2017). A new metre for cheap, quick, reliable and simple thermal transmittance (U-Value) measurements in buildings. Sensors, 17, 1-18. https://doi.org/10.3390/s17092017 PMid:28869521 PMCid:PMC5620656

(27) Bienvenido-Huertas, D., Moyano, J., Rodríguez-Jiménez, C. E. y Marín, D. (2019). Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method. Applied Energy, 233-234, 1-14. https://doi.org/10.1016/j.apenergy.2018.10.052

(28) Kim, S. H., Kim, J. H., Jeong, H. G. y Song, K. D. (2018). Reliability Field Test of the Air-Surface Temperature Ratio Method for In Situ Measurement of U-Values. Energies, 11, 1-15. https://doi.org/10.3390/en12010001

(29) Cesaratto, P. G. y de Carli, M. (2013). A measuring campaign of thermal conductance in situ and possible impacts on net energy demand in buildings. Energy and Buildings, 59, 29-36. https://doi.org/10.1016/j.enbuild.2012.08.036

(30) International Organization for Standardization. (2007). ISO 6946:2007 - Building components and building elements - Thermal resistance and thermal transmittance - Calculation method.

(31) Wild, W. (2007). Application of infrared thermography in civil engineering.

(32) Bienvenido-Huertas, D., Bermúdez, J., Moyano, J. J. y Marín, D. (2019). Influence of ICHTC correlations on the thermal characterization of façades using the quantitative internal infrared thermography method. Building and Environment, 149, 512-525. https://doi.org/10.1016/j.buildenv.2018.12.056

(33) Alamdari, F. y Hammond, G. P. (1983). Improved data correlations for buoyancy-driven convection in rooms. Building Services Engineering Research and Technology, 4, 106-112. https://doi.org/10.1177/014362448300400304

(34) Churchill, S. W. y Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a horizontal cylinder. International Journal of Heat and Mass Transfer, 18, 1049-1053. https://doi.org/10.1016/0017-9310(75)90222-7

(35) Holman, J. P. (1986). Heat Transfer (6th Edition), McGraw-Hill, Inc., New York.

(36) Fohanno, S. y Polidori, G. (2006). Modelling of natural convective heat transfer at an internal surface. Energy and Buildings, 38, 548-553. https://doi.org/10.1016/j.enbuild.2005.09.003

(37) Earle, R. L. y Earle, W. D. (1983). Unit Operations in Food Processing.

(38) Giesecke, F. E. (1940). Radiant heating and cooling. ASHVE, J, Heating Piping Air Conditioning, 12, 484-485.

(39) Khalifa, A. J. N. y Marshall, R. H. (1990). Validation of heat transfer coefficients on interior building surfaces using a real-sized indoor test cell. International Journal of Heat and Mass Transfer, 33, 2219-2236. https://doi.org/10.1016/0017-9310(90)90122-B

(40) Wilkes, G. B. y Peterson, C. M. F. (1938). Radiation and convection from surfaces in various positions. Transactions, ASHVE, 44, 513-520.

(41) International Organization for Standardization. (2014). ISO 9869-1:2014 - Thermal insulation - Building elements - In situ measurement of thermal resistance and thermal transmittance. Part 1: Heat flow meter method.

(42) Tejedor, B., Casals, M., Gangolells, M. y Roca, X. (2017). Quantitative internal infrared thermography for determining in-situ thermal behaviour of façades. Energy and Buildings, 151, 187-197. https://doi.org/10.1016/j.enbuild.2017.06.040

(43) Churchill, S. W. y Usagi, R. (1972). A general expression for the correlation of rates of transfer and other phenomena. AIChE Journal, 18, 1121-1128. https://doi.org/10.1002/aic.690180606

(44) Evangelisti, L., Guattari, C., Gori, P., de Lieto Vollaro, R. y Asdrubali, F. (2016). Experimental investigation of the influence of convective and radiative heat transfers on thermal transmittance measurements. International Communications in Heat and Mass Transfer, 78, 214-223. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.008

(45) Gobierno de España. (1979). Real Decreto 2429/79, de 6 de julio, por el que se aprueba la Norma Básica de la Edificación NBE-CT-79, sobre Condiciones Térmicas en los Edificios.

(46) Gobierno de España. (2006). Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.

(47) Bienvenido-huertas, D., Moyano, J., Marín, D. y Fresco-contreras, R. (2019). Review of in situ methods for assessing the thermal transmittance of walls. Renewable and Sustainable Energy Reviews, 102, 356-371. https://doi.org/10.1016/j.rser.2018.12.016

(48) Instituto Eduardo Torroja de Ciencias de la Construcción. (2010). Catálogo de elementos constructivos del CTE. Recuperado de https://www.codigotecnico.org/Programas/CatalogoElementosConstructivos.html.

(49) Pérez-Bella, J. M., Domínguez-Hernández, J., Cano-Suñén, E., Del Coz-Díaz, J. J. y Álvarez Rabanal, F. P. (2015). A correction factor to approximate the design thermal conductivity of building materials. Application to Spanish façades. Energy and Buildings, 88, 153-164. https://doi.org/10.1016/j.enbuild.2014.12.005

Publicado

2021-09-16

Cómo citar

Bienvenido-Huertas, D. ., Carretero-Ayuso, M. J. ., Rodríguez-Jiménez, C. E. ., Marín-García, D. ., & Moyano, J. . (2021). Análisis de la influencia del coeficiente de transferencia de calor en la caracterización de la transmitancia térmica de fachadas con el método termométrico. Informes De La Construcción, 73(563), e409. https://doi.org/10.3989/ic.82602

Número

Sección

Artículos