Analyzing the influence of the total heat transfer coefficient on the thermal transmittance characterization of facades with the thermometric method
DOI:
https://doi.org/10.3989/ic.82602Keywords:
thermal transmittance, facades, thermometric method, heat transfer coefficient, testAbstract
To assess the thermal transmittance of facades is one of the most important steps in energy audit work. For this, there is a wide variety of experimental methods. One of the most widely used methods is the thermometric method. However, there is a knowledge gap in relation to the data analysis approach. For this reason, in this study the feasibility of using different approaches to the method was analyzed. To do this, 20 façades were analyzed and 9 different formulations were proposed using approximations for the total heat transfer coefficient of the scientific literature. Likewise, two approaches to data analysis were evaluated (arithmetic mean of the instantaneous measurements, and the sum of the numerator and the denominator), as well as the data filtering necessary to apply. The results allowed determining the most suitable analysis configuration to apply the method.
Downloads
References
(1) European Commission. (2011). A Roadmap for moving to a competitive low carbon economy in 2050.
(2) European Environment Agency. (2017). Final energy consumption by sector and fuel (2017). Recuperado de http://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-9/assessment-1.
(3) European Commission. (2006). Action Plan for Energy Efficiency: Realising the Potential.
(4) Pérez-Lombard, L., Ortiz, J., y Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40, 394-398. https://doi.org/10.1016/j.enbuild.2007.03.007
(5) United Nations Environment Programme. (2012). Building Design and Construction: Forging Resource Efficiency and Sustainable Development.
(6) Aksoy, U. T., y Inalli, M. (2006). Impacts of some building passive design parameters on heating demand for a cold region. Building and Environment, 41, 1742-1754. https://doi.org/10.1016/j.buildenv.2005.07.011
(7) De Lieto Vollaro, R., Guattari, C., Evangelisti, L., Battista, G., Carnielo, E. y Gori, P. (2015). Building energy performance analysis: A case study. Energy and Buildings, 87, 87-94. https://doi.org/10.1016/j.enbuild.2014.10.080
(8) Escorcia, O., García, R. Trebilcock, M., Celis, F. y Bruscato, U. (2012). Envelope improvements for energy efficiency of homes in the south-central Chile. Informes de La Construcción. 64, 563-574. https://doi.org/10.3989/ic.11.143
(9) Friedman, C., Becker, N. y Erell, E. (2014). Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis, Energy, 77, 183-193.
(10) Gugliermetti, F. y Bisegna, F. (2007). Saving energy in residential buildings: The use of fully reversible windows. Energy, 32, 1235-1247. https://doi.org/10.1016/j.energy.2006.08.004
(11) Pisello, A. L., Rossi, F. y Cotana, F. (2014). Summer and winter effect of innovative cool roof tiles on the dynamic thermal behavior of buildings. Energies, 7, 2343-2361. https://doi.org/10.3390/en7042343
(12) Adhikari, R., Lucchi, E. y Pracchi, V. (2012). Experimental measurements on thermal transmittance of the opaque vertical walls in the historical buildings. Trabajo presentado en PLEA2012 - 28th Conference, Opportunities, Limits & Needs Towards an environmentally responsible architecture, Lima, Perú.
(13) Filippín, C. y Flores Larsen, S. (2005). Comportamiento térmico de invierno de una vivienda convencional en condiciones reales de uso. Avances En Energías Renovables y Medio Ambiente, 9, 67-72.
(14) Oral, G. K. y Yilmaz, Z. (2002). The limit U values for building envelope related to building form in temperate and cold climatic zones. Building and Environment, 37, 1173-1180. https://doi.org/10.1016/S0360-1323(01)00102-0
(15) Prada, A.,Cappelletti, F., Baggio, P. y Gasparella, A. (2014). On the effect of material uncertainties in envelope heat transfer simulations. Energy and Buildings, 71, 53-60. https://doi.org/10.1016/j.enbuild.2013.11.083
(16) Bustamante, W., Bobadilla, A., Navarrete, B., Saelzer, G. y Vidal, S. (2005). Uso eficiente de la energía en edificios habitacionales. Mejoramiento térmico de muros de albañilería de ladrillos cerámicos. El caso de Chile. Revista de la Construcción, 4, 5-12.
(17) Melo, A. P., Barcelos, M. M. y Folle, D. (2015). Análise térmica e energética da aplicação de isolante térmico em fachadas e cobertura de um edifício comercial. Revista de Engenharia Civil IMED, 2, 40-49. https://doi.org/10.18256/2358-6508/rec-imed.v2n1p40-49
(18) Bienvenido-Huertas, D., Rodríguez-Álvaro, R., Moyano, J. J., Rico, F. y Marín, D. (2018). Determining the U-Value of Façades Using the Thermometric Method: Potentials and Limitations. Energies, 11, 1-17. https://doi.org/10.3390/en11020360
(19) Cesaratto, P. G., De Carli, M. y Marinetti, S. (2011). Effect of different parameters on the in situ thermal conductance evaluation. Energy and Buildings, 43, 1792-1801. https://doi.org/10.1016/j.enbuild.2011.03.021
(20) Cucumo, M., Ferraro, V., Kaliakatsos, D. y Mele, M. (2018). On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings. Energy and Buildings, 158, 677-683. https://doi.org/10.1016/j.enbuild.2017.10.034
(21) Cucumo, M., De Rosa, A., Ferraro, V., Kaliakatsos, D. y Marinelli, V. (2006). A method for the experimental evaluation in situ of the wall conductance. Energy and Buildings, 38, 238-244. https://doi.org/10.1016/j.enbuild.2005.06.005
(22) Desogus, G., Mura, S. y Ricciu, R. (2011). Comparing different approaches to in situ measurement of building components thermal resistance. Energy and Buildings, 43, 2613-2620. https://doi.org/10.1016/j.enbuild.2011.05.025
(23) Meng, X., Yan, B., Gao, Y., Wang, J., Zhang, W. y Long, W. (2015). Factors affecting the in situ measurement accuracy of the wall heat transfer coefficient using the heat flow meter method. Energy and Buildings, 86, 754-765. https://doi.org/10.1016/j.enbuild.2014.11.005
(24) Peng, C. y Wu, Z. (2008). In situ measuring and evaluating the thermal resistance of building construction. Energy and Buildings, 40, 2076-2082. https://doi.org/10.1016/j.enbuild.2008.05.012
(25) Trethowen, H. (1986). Measurement errors with surface-mounted heat flux sensors. Building and Environment, 21, 41-56. https://doi.org/10.1016/0360-1323(86)90007-7
(26) Andújar Márquez, J. M., Martínez Bohórquez, M. A. y Gómez Melgar, S. (2017). A new metre for cheap, quick, reliable and simple thermal transmittance (U-Value) measurements in buildings. Sensors, 17, 1-18. https://doi.org/10.3390/s17092017 PMid:28869521 PMCid:PMC5620656
(27) Bienvenido-Huertas, D., Moyano, J., Rodríguez-Jiménez, C. E. y Marín, D. (2019). Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method. Applied Energy, 233-234, 1-14. https://doi.org/10.1016/j.apenergy.2018.10.052
(28) Kim, S. H., Kim, J. H., Jeong, H. G. y Song, K. D. (2018). Reliability Field Test of the Air-Surface Temperature Ratio Method for In Situ Measurement of U-Values. Energies, 11, 1-15. https://doi.org/10.3390/en12010001
(29) Cesaratto, P. G. y de Carli, M. (2013). A measuring campaign of thermal conductance in situ and possible impacts on net energy demand in buildings. Energy and Buildings, 59, 29-36. https://doi.org/10.1016/j.enbuild.2012.08.036
(30) International Organization for Standardization. (2007). ISO 6946:2007 - Building components and building elements - Thermal resistance and thermal transmittance - Calculation method.
(31) Wild, W. (2007). Application of infrared thermography in civil engineering.
(32) Bienvenido-Huertas, D., Bermúdez, J., Moyano, J. J. y Marín, D. (2019). Influence of ICHTC correlations on the thermal characterization of façades using the quantitative internal infrared thermography method. Building and Environment, 149, 512-525. https://doi.org/10.1016/j.buildenv.2018.12.056
(33) Alamdari, F. y Hammond, G. P. (1983). Improved data correlations for buoyancy-driven convection in rooms. Building Services Engineering Research and Technology, 4, 106-112. https://doi.org/10.1177/014362448300400304
(34) Churchill, S. W. y Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a horizontal cylinder. International Journal of Heat and Mass Transfer, 18, 1049-1053. https://doi.org/10.1016/0017-9310(75)90222-7
(35) Holman, J. P. (1986). Heat Transfer (6th Edition), McGraw-Hill, Inc., New York.
(36) Fohanno, S. y Polidori, G. (2006). Modelling of natural convective heat transfer at an internal surface. Energy and Buildings, 38, 548-553. https://doi.org/10.1016/j.enbuild.2005.09.003
(37) Earle, R. L. y Earle, W. D. (1983). Unit Operations in Food Processing.
(38) Giesecke, F. E. (1940). Radiant heating and cooling. ASHVE, J, Heating Piping Air Conditioning, 12, 484-485.
(39) Khalifa, A. J. N. y Marshall, R. H. (1990). Validation of heat transfer coefficients on interior building surfaces using a real-sized indoor test cell. International Journal of Heat and Mass Transfer, 33, 2219-2236. https://doi.org/10.1016/0017-9310(90)90122-B
(40) Wilkes, G. B. y Peterson, C. M. F. (1938). Radiation and convection from surfaces in various positions. Transactions, ASHVE, 44, 513-520.
(41) International Organization for Standardization. (2014). ISO 9869-1:2014 - Thermal insulation - Building elements - In situ measurement of thermal resistance and thermal transmittance. Part 1: Heat flow meter method.
(42) Tejedor, B., Casals, M., Gangolells, M. y Roca, X. (2017). Quantitative internal infrared thermography for determining in-situ thermal behaviour of façades. Energy and Buildings, 151, 187-197. https://doi.org/10.1016/j.enbuild.2017.06.040
(43) Churchill, S. W. y Usagi, R. (1972). A general expression for the correlation of rates of transfer and other phenomena. AIChE Journal, 18, 1121-1128. https://doi.org/10.1002/aic.690180606
(44) Evangelisti, L., Guattari, C., Gori, P., de Lieto Vollaro, R. y Asdrubali, F. (2016). Experimental investigation of the influence of convective and radiative heat transfers on thermal transmittance measurements. International Communications in Heat and Mass Transfer, 78, 214-223. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.008
(45) Gobierno de España. (1979). Real Decreto 2429/79, de 6 de julio, por el que se aprueba la Norma Básica de la Edificación NBE-CT-79, sobre Condiciones Térmicas en los Edificios.
(46) Gobierno de España. (2006). Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.
(47) Bienvenido-huertas, D., Moyano, J., Marín, D. y Fresco-contreras, R. (2019). Review of in situ methods for assessing the thermal transmittance of walls. Renewable and Sustainable Energy Reviews, 102, 356-371. https://doi.org/10.1016/j.rser.2018.12.016
(48) Instituto Eduardo Torroja de Ciencias de la Construcción. (2010). Catálogo de elementos constructivos del CTE. Recuperado de https://www.codigotecnico.org/Programas/CatalogoElementosConstructivos.html.
(49) Pérez-Bella, J. M., Domínguez-Hernández, J., Cano-Suñén, E., Del Coz-Díaz, J. J. y Álvarez Rabanal, F. P. (2015). A correction factor to approximate the design thermal conductivity of building materials. Application to Spanish façades. Energy and Buildings, 88, 153-164. https://doi.org/10.1016/j.enbuild.2014.12.005
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.