Simulación de estrategias bioclimáticas concretas con el objetivo de poner en valor los diseños de la arquitectura tradicional. Caso de estudio: la inercia térmica en El Valle

Autores/as

DOI:

https://doi.org/10.3989/ic.87967

Palabras clave:

metodología, estrategia bioclimática, simulación energética, inercia térmica, arquitectura tradicional

Resumen


En este artículo se aporta una metodología para evaluar la eficiencia energética que aportan las estrategias bioclimáticas de las viviendas vernáculas. El caso de estudio ha sido el Valle del Jerte (Cáceres) con unas tres mil viviendas tradicionales. En primer lugar, se han definido tres tipologías constructivas, y posteriormente se ha simulado específicamente el comportamiento energético de la estrategia de la inercia térmica, proporcionada por los muros de piedra de la envolvente de los edificios, y por la tierra en contacto con la planta baja. En las simulaciones fueron eliminados los elementos masivos para analizar las diferencias en las condiciones higrotérmicas y los intercambios energéticos, tanto de calentamiento como de enfriamiento. Los resultados indican que esta estrategia es beneficiosa, ya que estabiliza las temperaturas interiores respecto a las oscilaciones exteriores, acercándolas a las medias diurnas, más agradables. Identificar las estrategias bioclimáticas permite proponer la valorización de elementos vernáculos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Chandel, S.S., Sharma, V., Marwah, B.M. (2016). Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions. Renew. Sustain. Energy Rev. 65, 459-477.

(2) Manzano-Agugliaro, F., Montoya, F.G., Sabio-Ortega, A., García-Cruz, A. (2015). Review of bioclimatic architecture strategies for achieving thermal comfort. Renew. Sustain. Energy Rev. 49, 736-755.

(3) Sözen, İ., Koçlar Oral, G., (2019). Outdoor thermal comfort in urban canyon and courtyard in hot arid climate: A parametric study based on the vernacular settlement of Mardin. Sustain. Cities Soc. 48, 101398.

(4) Manoj Kumar Singh, S.K.A., Mahapatra, Sadhan (2009). Bioclimatism and vernacular architecture of north-east India. Build. Environ. J.

(5) Tang, L., Nikolopoulou, M., Zhang, N. (2014). Bioclimatic design of historic villages in central-western regions of China. Energy Build. 70, 271-278.

(6) Barbero-Barrera, M.M., Gil-Crespo, I.J., Maldonado-Ramos, L. (2014). Historical development and environment adaptation of the traditional cave-dwellings in Tajuña’s valley, Madrid, Spain. Build. Environ. 82, 536-545.

(7) Cardinale, N., Rospi, G., Stefanizzi, P. (2013). Energy and microclimatic performance of Mediterranean vernacular buildings: The Sassi district of Matera and the Trulli district of Alberobello. Build. Environ. 59, 590-598.

(8) Martínez-Molina, A., Tort-Ausina, I., Cho, S., Vivancos, J.L. (2016). Energy efficiency and thermal comfort in historic buildings: A review. Renew. Sustain. Energy Rev. 61, 70-85.

(9) Baran, M., Yıldırım, M., Yılmaz, A. (2011). Evaluation of ecological design strategies in traditional houses in Diyarbakir, Turkey. J. Clean. Prod. 19(6-7), 609-619.

(10) Bodach, S., Lang, W., Hamhaber, J. (2014). Climate responsive building design strategies of vernacular architecture in Nepal. Energy Build. 81, 227-242.

(11) Gou, S., Li, Z., Zhao, Q., Nik, V.M., Scartezzini, J.L. (2015). Climate responsive strategies of traditional dwellings located in an ancient village in hot summer and cold winter region of China. Build. Environ. 86, 151-165.

(12) Silvero, F., Montelpare, S., Rodrigues, F., Spacone, E., Varum, H. (2018). Energy retrofit solutions for heritage buildings located in hot-humid climates. Procedia Struct. Integr. 11, 52-59.

(13) Caro, R., Sendra, J.J., (2020). Evaluation of indoor environment and energy performance of dwellings in heritage buildings. The case of hot summers in historic cities in Mediterranean Europe. Sustain. Cities Soc. 52, 101798.

(14) Webb, A.L. (2017). Energy retrofits in historic and traditional buildings: A review of problems and methods. Renew. Sustain. Energy Rev. 77, 748-759.

(15) Harish, V.S.K.V., Kumar, A. (2016). A review on modeling and simulation of building energy systems. Renew. Sustain. Energy Rev. 56, 1272-1292.

(16) Gil Crespo, I. J., Barbero Barrera, M. M., & Maldonado Ramos, L. (2015). Climatic analysis methodology of vernacular architecture. In V. C. C. Mileto, F. Vegas, L. García Soriano (Ed.), Vernacular Architecture: Towards a Sustainable Future (pp. 327-332).

(17) Aste, N., Angelotti, A., Buzzetti, M. (2009). The influence of the external walls thermal inertia on the energy performance of well insulated buildings. Energy Build. 41(11), 1181-1187.

(18) Orosa, J.A., Oliveira, A.C. (2012). A field study on building inertia and its effects on indoor thermal environment. Renew. Energy. 37(1), 89-96.

(19) Elias-Ozkan, S.T., Summers, F., Surmeli, N., Yannas, S. (2006). A comparative study of the thermal performance of building materials, PLEA 2006 - 23rd Int. Conf. Passiv. Low Energy Archit. Conf. Proc. 6-8.

(20) Rodrigues, E., Fernandes, M.S., Gaspar, A.R., Gomes, Á., Costa, J.J. (2019). Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass. Appl. Energy. 252, 113437.

(21) Lizana, J., Chacartegui, R., Barrios-Padura, A., Valverde, J.M., Ortiz, C. (2018). Identification of best available thermal energy storage compounds for low-to-moderate temperature storage applications in buildings. Mater. Construcción. 68(331), e160.

(22) Mariani, S., Rosso, F., Ferrero, M. (2018). Building in historical areas: Identity values and energy performance of innovative massive stone envelopes with reference to traditional building solutions. Buildings. 8(2), 17

(23) Medjelekh, D., Ulmet, L., Abdou, S., Dubois, F. (2016). A field study of thermal and hygric inertia and its effects on indoor thermal comfort: Characterization of travertine stone envelope. Build. Environ. 106, 57-77.

(24) Stéphan, E., Cantin, R., Caucheteux, A., Tasca-Guernouti, S., Michel, P. (2014). Experimental assessment of thermal inertia in insulated and non-insulated old limestone buildings. Build. Environ. 80, 241-248.

(25) Collet, F., Serres, L., Miriel, J., Bart, M. (2006). Study of thermal behaviour of clay wall facing south. Build. Environ. 41(3), 307-315.

(26) Tonelli, C., Grimaudo, M. (2014). Timber buildings and thermal inertia: Open scientific problems for summer behavior in Mediterranean climate. Energy Build. 83, 89-95.

(27) Mazarrón, F.R., Cid-Falceto, J., Cañas, I. (2012). Ground thermal inertia for energy efficient building design: A case study on food industry. Energies. 5(2), 227-242.

(28) Barbero-Barrera, M.M., Gil-Crespo, I.J., Maldonado-Ramos, L. (2014). Historical development and environment adaptation of the traditional cave-dwellings in Tajuña’s valley, Madrid, Spain. Build. Environ. 82, 536-545.

(29) Stazi, F., Bonfigli, C., Tomassoni, E., Di Perna, C., Munafò, P. (2015). The effect of high thermal insulation on high thermal mass: Is the dynamic behaviour of traditional envelopes in Mediterranean climates still possible?. Energy Build. 88, 367-383.

(30) Bojić, M.L., Loveday, D.L. (1997). The influence on building thermal behavior of the insulation/masonry distribution in a three-layered construction. Energy Build. 26(2), 157.

(31) Di Perna, C., Stazi, F., Casalena, A.U., D’Orazio, M. (2011). Influence of the internal inertia of the building envelope on summertime comfort in buildings with high internal heat loads. Energy Build. 43(1), 200-206.

(32) Reilly, A., Kinnane, O. (2017). The impact of thermal mass on building energy consumption. Appl. Energy. 198, 108-121.

(33) Verbeke, S., Audenaert, A. (2018). Thermal inertia in buildings: A review of impacts across climate and building use. Renew. Sustain. Energy Rev. 82(3), 2300-2318.

(34) Karlsson, J., Wadsö, L., Öberg, M. (2013). A conceptual model that simulates the influence of thermal inertia in building structures. Energy Build. 60, 146-151.

(35) Foucquier, A., Robert, S., Suard, F., Stéphan, Jay, L.A. ( 2013). State of the art in building modelling and energy performances prediction: A review. Renew. Sustain. Energy Rev. 23, 272-288.

(36) Avendaño-Vera, C., Martinez-Soto, A., Marincioni, V. (2020). Determination of optimal thermal inertia of building materials for housing in different Chilean climate zones. Renew. Sustain. Energy Rev. 131, 110031.

(37) Martín, S., Mazarrón, F.R., Cañas, I. (2010). Study of thermal environment inside rural houses of Navapalos (Spain): The advantages of reuse buildings of high thermal inertia. Constr. Build. Mater. 24(5), 666-676.

(38) Monge-Barrio, A., Sánchez-Ostiz, A. (2015). Energy efficiency and thermal behaviour of attached sunspaces, in the residential architecture in Spain. Summer Conditions. Energy Build. 108, 244-256.

(39) Xiao, F., Fan, C. (2014). Data mining in building automation system for improving building operational performance. Energy Build. 75, 109-118.

(40) Evola, G., Marletta, L., Natarajan, S., Maria Patanè, E. (2017). Thermal inertia of heavyweight traditional buildings: Experimental measurements and simulated scenarios. Energy Procedia. 133, 42-52.

(41) Akkurt, G.G., Aste, N., Borderon, J., Buda, A., Calzolari, M., Chung, D., Costanzo, V., Del Pero, C., Evola, G., Huerto-Cardenas, H.E., Leonforte, F., Lo Faro, A., Lucchi, E., Marletta, L., Nocera, F., Pracchi, V., Turhan, C. (2020). Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions. Renew. Sustain. Energy Rev. 118, 109509.

(42) Niu, S., Lau, S.S.Y., Shen, Z., Lau, S.S.Y. (2018). Sustainability issues in the industrial heritage adaptive reuse: rethinking culture-led urban regeneration through Chinese case studies. J. Hous. Built Environ. 33, 501-518.

(43) Lidelöw, S., Örn, T., Luciani, A., Rizzo, A. (2019). Energy-efficiency measures for heritage buildings: A literature review. Sustain. Cities Soc. 45, 231-242.

(44) Pisello, A.L., Castaldo, V.L., Taylor, J.E., Cotana, F. (2016). The impact of natural ventilation on building energy requirement at inter-building scale. Energy Build. 127, 870-883.

(45) Daemei, A.B., Limaki, A.K., Safari, H. (2016). Opening Performance Simulation in Natural Ventilation Using Design Builder (Case Study: A Residential Home in Rasht) in: Energy Procedia, Elsevier Ltd, 100, 412-422.

(46) Junta de Extremadura, Proyecto ClimEx. (2014). Caracterización Climática de Extremadura. Proyecto Edea Renov. (accessed July 7, 2020). http://renov.proyectoedea.com/es/content/resultados.

(47) Neila González, F.J. (2004). Arquitectura Bioclimática en un entorno sostenible, Cuadernos de Investigación Urbanística. Madrid. Neila González FJ. Arquitectura Bioclimática en un entorno sostenible. Madrid: Munilla-Lería; 2004.

(48) Tsilingiris, P.T. (2004). On the thermal time constant of structural walls. Appl. Therm. Eng. 743-757.

(49) Fathalian, A., Kargarsharifabad, H. (2018). Actual validation of energy simulation and investigation of energy management strategies (Case Study: An office building in Semnan, Iran). Case Stud. Therm. Eng. 12, 510-516.

(50) Ryan, E.M., Sanquist, T.F. (2012). Validation of building energy modeling tools under idealized and realistic conditions. Energy Build. 47, 375-382.

(51) Cunningham y Acker, Animal Science and Industry, 2000.

(52) Montalbán Pozas, B., Neila González, F.J. (2016). Hygrothermal behaviour and thermal comfort of the vernacular housings in the Jerte Valley (Central System, Spain). Energy Build. 130, 219-227.

(53) Montalbán Pozas, B. (2015). Rehabilitación sostenible de la arquitectura tradicional del Valle del Jerte, Extremadura. http://dehesa.unex.es/xmlui/handle/10662/2821.

(54) Technical committee AEN/CTN 100, UNE-EN 15251:2008. (2007). Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics.

Publicado

2022-05-30

Cómo citar

Montalbán Pozas, B. ., & Serrano, F. . (2022). Simulación de estrategias bioclimáticas concretas con el objetivo de poner en valor los diseños de la arquitectura tradicional. Caso de estudio: la inercia térmica en El Valle. Informes De La Construcción, 74(566), e443. https://doi.org/10.3989/ic.87967

Datos de los fondos

Junta de Extremadura
Números de la subvención GR15107

European Regional Development Fund
Números de la subvención GR15107