Compuestos de yeso con adición de fibras textiles posconsumo de algodón
DOI:
https://doi.org/10.3989/ic.6205Palabras clave:
Residuos textiles, Valorización textil, Materiales sostenibles, Propiedades físico-mecánicas, YesoResumen
La sostenibilidad en la construcción es clave en la reducción del consumo de recursos como materiales y energía, es fundamental adoptar acciones eficientes en procesos de construcción como la reutilización de residuos. Por ello, el presente trabajo analiza la influencia de la incorporación de residuos textiles posconsumo de algodón en las propiedades físico-mecánicas de compuestos de yeso. Se realizó un trabajo experimental en donde se ensayaron probetas de yeso adicionadas con fibras posconsumo de algodón en diferentes formatos, y longitudes (20 y 35mm), adiciones de 0,5% y fibras de 35mm de longitud incrementaron la resistencia a flexión y compresión en un 5,9% y 11% respectivamente, y la absorción de agua por capilaridad descendió un 26% con el 1% de adición. Finalmente se observó que las fibras reducen el desprendimiento de fragmentos de yeso al momento de alcanzar la carga de rotura, mejorando la tenacidad de los compuestos.
Descargas
Citas
(1) Green Building Council España, Asociación Sostenibilidad y Arquitectura and Centro Complutense de Estudios e Información Ambiental. (2010). Cambio global España 2020-2050. Sector Edificación. La imprescindible reconversión del sector frente al reto de la sostenibilidad. Cambio Global España 2020/50. Sector Edificación, abril. Recuperado de https://gbce.es/archivos/ckfinderfiles/Investigacion/CGE_Edificacion_baja.pdf.
(2) Cândido L., Kindlein W., Demori R., Carli L., Mauler R. and Oliveira R. (2011). The recycling cycle of materials as a design project tool. J. Clean. Prod., 19(13), 1438-1445. https://doi.org/10.1016/j.jclepro.2011.04.017
(3) González Vallejo P., Solís Guzmán J., Llácer Pantión R. and Marrero Méndez M. (2015). La construcción de edificios residenciales en España en el período 2007-2010 y su impacto según el indicador Huella Ecológica. Informes de la Construcción, 67(539), e111. https://doi.org/10.3989/ic.14.017
(4) Ley 10/1998, de 21 de abril, de residuos. BOE 96, (1998). Jefatura del Estado. Recuperado de https://www.boe.es/buscar/doc.php?id=BOE-A-1998-9478.
(5) Giesekam J., Barrett J., Taylor P., Owen A. (2014). The greenhouse gas emissions and mitigation options for materials used in UK construction. Energy Build., 78, 202-214. https://doi.org/10.1016/j.enbuild.2014.04.035
(6) Briga-Sá A., Nascimento D., Teixeira N., Pinto J., Caldeira F., Varum H. and Paiva A. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155-160. https://doi.org/10.1016/j.conbuildmat.2012.08.037
(7) Ellen Macarthur Foundation and Circular Fibres Initiative (16 de enero de 2022). A new textiles economy: Redesigning fashion's future. Recuperado de http://www.ellenmacarthurfoundation.org/publications.
(8) Global Fashion Agenda (5 de febrero de 2022). Copenhagen Fashion Summit. Presented ad Global Fashion Agenda. Recuperado de: https://www.globalfashionagenda.com/.
(9) Sandin G. and Peters G.M. (2018). Environmental impact of textile reuse and recycling - A review. Journal of Cleaner Production, 184, 353-365. https://doi.org/10.1016/j.jclepro.2018.02.266
(10) Textile Exchange (2018). Textile Sustainability united in action: Accelerating Sustainability in Textiles & Fashion. Presentado en Textile Sustainability Conference.
(11) International Energy Agency. (2016). Energy, Climate Change & Environment: 2016 insights. pp. 113. https://www.iea.org/reports/energy-climate-change-and-environment-2016-insights. https://doi.org/10.1787/9789264266834-en
(12) Steffen W., Richardson K., Rockström J., Cornell S.E., Fetzer I., Bennett E.M., Biggs R., Carpenter S.R., De Vries W., De Wit C.A. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223). https://doi.org/10.1126/science.1259855 PMid:25592418
(13) Lee Y. (2013). Sound absorption properties of recycled polyester fibrous assembly absorbers. AUTEX Research Journal, 3(2), Recuperado de http://www.autexrj.com/cms/zalaczone_pliki/5-03-2.pdf.
(14) Rubino C., Stefanizzi P. (2018). Textile wastes in building sector: A review. Modelling, Measurement and Control B, 87(3), 172-179. https://doi.org/10.18280/mmc_b.870309
(15) Carolina B., Saeys W., Lambrechts A. (2019). Hyperspectral imaging for textile sorting in the visible-near infrared range. Journal of Spectral Imaging, 8, ID-a17.
(16) Koopera (25 de marzo de 2022). Reutilización y reciclaje Koopera. Recuperado de https://www.koopera.org/preparacion-para-la-reutilizacion/.
(17) De Araújo M. (2011). 1 - Natural and man-made fibres: Physical and mechanical properties. Fibrous and Conposite Materials for Civil Engineering Applications, 3-28. https://doi.org/10.1533/9780857095583.1.3
(18) Peña-Pichardo P., Martínez-Barrera G., Martínez-López M., Ureña-Núñez F. and dos Reis, João Marciano Laredo. (2018). Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete. Construction and Building Materials, 177, 409-416. https://doi.org/10.1016/j.conbuildmat.2018.05.137
(19) Silva, G., Kim, S., Aguilar, R., Nakamatsu, J. (2020). Natural fibers as reinforcement additives for geopolymers - A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132. https://doi.org/10.1016/j.susmat.2019.e00132
(20) Alomayri T., Shaikh F.U.A., Low I.M (2013). Characterisation of cotton fibre-reinforced geopolymer composites. Composites Part B: Engineering, 50, 1-6. https://doi.org/10.1016/j.compositesb.2013.01.013
(21) Alomayri T., Shaikh F.U.A., Low I.M. (2013). Thermal and mechanical properties of cotton fabric-reinforced geopolymer composites. J. Mater. Sci., 48(19), 6746-6752, https://doi.org/10.1007/s10853-013-7479-2
(22) Alomayri T., Shaikh F.U.A., Low I.M. (2014). Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites. Materials & Design, 57, 360-365. https://doi.org/10.1016/j.matdes.2014.01.036
(23) Barbero-Barrera, M.d.M., Pombo, O., Navacerrada, M.Á. (2016). Textile fibre waste bindered with natural hydraulic lime. Composites Part B: Engineering, 94, 26-33. https://doi.org/10.1016/j.compositesb.2016.03.013
(24) Rajput, D., Bhagade, S.S., Raut, S.P., Ralegaonkar, R.V., Mandavgane, S.A. (2012). Reuse of cotton and recycle paper mill waste as building material. Construction and Building Materials, 34, 470-475. https://doi.org/10.1016/j.conbuildmat.2012.02.035
(25) Hassan, T., & Jamshaid, H. (2020). Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste. Polymers, 12(3), 654. https://doi.org/10.3390/polym12030654 PMid:32183033 PMCid:PMC7183085
(26) Silva G., Kim S., Aguilar R. and Nakamatsu J. (2020). Natural fibers as reinforcement additives for geopolymers - A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132. https://doi.org/10.1016/j.susmat.2019.e00132
(27) Alzeer, M., MacKenzie, K.J.D. (2012). Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres. Journal of Materials Science, 47(19), 6958-6965. https://doi.org/10.1007/s10853-012-6644-3
(28) Özen, M.; Demircan, G., Kisa, M., İlik, Z. (2020). Investigation of usability of waste textile fabrics in composites. Emerging Materials Research, 9(1), 18-23. https://doi.org/10.1680/jemmr.18.00106
(29) S. Spadea, I. Farina, A. Carrafiello, F. Fraternali (2015). Recycled nylon fibers as cement mortar reinforcement. Constr. Build. Mater., 80, 200-209. https://doi.org/10.1016/j.conbuildmat.2015.01.075
(30) Habib, A., Begum, R., Alam, M. (2013). Mechanical properties of synthetic fibers reinforced mortars. International Journal of Scientific & Engineering Research, 4(4). https://www.researchgate.net/publication/235936125
(31) Olivito, R.S., Cevallos, O.A., Carrozzini, A. (2014). Development of durable cementitious composites using sisal and flax fabrics for reinforcement of masonry structures. Materials & Design, 57, 258-268. https://doi.org/10.1016/j.matdes.2013.11.023
(32) Assaedi, H., Alomayri, T., Shaikh, F. U., Low, I. (2015). Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. Journal of Advanced Ceramics, 4(4), 272-281. https://doi.org/10.1007/s40145-015-0161-1
(33) Kalkan Ş. (2017). Technical investigation for the use of textile waste fiber types in new generation composite plasters. M.S. thesis, Univ. İzmir Katip Çelebi Üniversitesi., Turquía.
(34) Vasconcelos G., Lourenço P.B., Camões A., Martins A. and Cunha S. (2015). Evaluation of the performance of recycled textile fibres in the mechanical behaviour of a gypsum and cork composite material. Cement and Concrete Composites, 58, 29-39. https://doi.org/10.1016/j.cemconcomp.2015.01.001
(35) Tasán Cruz D.M. (2011). Caracterización de morteros de yeso reforzados con fibras recuperadas de eslingas textiles de un solo uso. M.S. thesis, Universidad Politécnica de Madrid., Madrid. Recuperado de http://oa.upm.es/10836/
(36) Ramírez, A.O., Santos, A.G., González, F.J.N. (2011). Caracterización física y mecánica de placas de yeso con materiales de cambio de fase incorporados para almacenamiento de energía térmica mediante calor latente. Materiales de Construcción, 61(303), 465-484. https://doi.org/10.3989/mc.2011.53309
(37) Santos, A.G. (2009). Escayola reforzada con fibras de polipropileno y aligerada con perlas de poliestireno expandido Escayola reforzada con fibras de polipropileno y aligerada con perlas de poliestireno expandido. Materiales de Construcción, 59(293), 105-124. https://doi.org/10.3989/mc.2009.41107
(38) UNE-EN (2009). UNE-EN 13279-1: 2009 Yesos de construcción y conglomerantes a base de yeso para la construcción. Parte 1: Definiciones y especificaciones. UNE Normalización Española.
(39) UNE-EN (2014). UNE-EN 13279-2:2014 Yesos de construcción y conglomerantes a base de yeso para la construcción. Parte 2: Métodos de ensayo. UNE Normalización Española.
(40) RILEM (1980). TC 25-PEM. Protection et erosion des monuments: Recommandés pour mesurer I'artération des pierres et évaluer I'efficacité des méthodes de traitement. Matériaux et Constructions. International Union of Laboratories and Experts in Construction Materials, Systems and Structures.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.