Optimización y diseño de colocación de muros de relleno en marcos estructurales de 4 y 8 plantas




Palabras clave:

comportamiento sismorresistente, muros de ladrillo, estructuras, hormigón, pórticos, análisis push-over


En la construcción, el ladrillo y el hormigón son los materiales más utilizados, ocupando una parte importante del presupuesto de edificación. Su gran versatilidad en la construcción contrasta con la fragilidad de estos elementos. Esta solución es adecuada para edificios de baja altura, pero no está tan clara para edificios de altura media y alta, debido a su baja ductilidad y su peso. La correcta ubicación de estos muros en los edificios podría mejorar su comportamiento resistente y dúctil. En esta investigación se encontrará la solución óptima para la colocación de muros de relleno con ladrillos en pórticos de 4 y 8 pisos, considerando ductilidad y resistencia.


Los datos de descargas todavía no están disponibles.


(1) Domínguez Santos, D.J., López Almansa, F., Benavent Climent, A. (2014). Behavior, for the Lorca earthquake on 11-05-2011, of wide beam building designed without seismic considerations. Informes de la Construcción, 66(533).

(2) Nettleton, S., Martin, D., Buse, C., & Prior, L. (2020). Materializing architecture for social care: Brick walls and compromises in design for later life. The British journal of sociology, 71(1), 153-167.

(3) Doocy, S., Daniels, A., Packer, C., Dick, A., Kirsch, T.D. (2013). The human impact of earthquakes: a historical review of events 1980-2009 and systematic literature review. PLoS currents, 5.

(4) Dominguez-Santos, D., Ballesteros-Perez, P., Mora-Melia, D. (2017). Structural resistance of reinforced concrete buildings in areas of moderate seismicity and assessment of strategies for structural improvement. Buildings, 7(4), 89.

(5) Dominguez D., Muñoz Velasco, P. (2017). Impact of Lightweight fired clay bricks used as enclosures for individual houses of one story on zones of high seismicity. Materiales de la Construcción, 67(328), e133.

(6) Dominguez-Santos, D., Mora-Melia D., Ballesteros Perez, P., Pincheira- Orellana, G., Retamal-Bravo C. (2019). Study of mechanical properties and seismic performance in wood-concrete composite blocks for building construction. Materials (Basel).

(7) Dominguez, D., Letelier, V., Muñoz. P. (2019). Seismic capacity of 2- and 3-storey RC buildings with eco-concrete made by using residues for replacing natural aggregates. Journal of Building Engineering. 28, 101086.

(8) Dominguez, D., Pallarés, F., Llanos, P. (2021). Seismic structural performance ofconcrete blocks with steel and aluminum alloy fiber aggregates for building construction. Mechanics of Advanced Materials and Structures.

(9) Wahid, S.A., Rawi, S. M., Desa, N.M. (2015). Utilization of plastic bottle waste in sand bricks. Journal of Basic and Applied Scientific Research, 5(1), 35-44. ISSN 2090-4304.

(10) Braga, F., Manfredi, V., Masi, A. et al. (2011). Performance of non-structural elements in RC buildings during the L’Aquila, 2009 earthquake. Bull Earthquake Eng, 9, 307-324.

(11) Dhakal, R.P. (2010). Damage to non-structural components and contents in 2010 Darfield earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 43(4), 404-411.

(12) Ercolino, M., Ricci, P., Magliulo, G., Verderame, G.M. (2016). Influence of infill panels on an irregular RC building designed according to seismic codes. Earthquakes and Structures, 10(2), 261-291.

(13) Perrone, D., Calvi, P.M., Nascimbene, R., Fischer, E.C., Magliulo, G. (2019). Seismic performance of non-structural elements during the 2016 Central Italy earthquake. Bulletin of Earthquake Engineering, 17(10), 5655-5677.

(14) López-Almansa, F., Domínguez, D., & Benavent-Climent, A. (2013). Vulnerability analysis of RC buildings with wide beams located in moderate seismicity regions. Engineering structures, 46, 687-702.

(15) Bianchi, F., Nascimbene, R., & Pavese, A. (2017). Experimental. Numerical simulations: Seismic response of a half scale three-storey infilled RC building strengthened using FRP retrofit. The Open Civil Engineering Journal, 11(1).

(16) Nascimbene, R. (2015). Numerical model of a reinforced concrete building: Earthquake analysis and experimental validation. Periodica Polytechnica Civil Engineering, 59(4), 521-530.

(17) Avila, L., Vasconcelos, G., Lourenço, P. B., Mendes, N., Alves, P., Costa, A. C. (2012). Seismic response analysis of concrete block masonry buildings: An experimental study using shaking table.

(18) Frasson Jr. A., Casali, J.M., Oliveira, A. L., Prudêncio Jr. L.R. (2012, June). A Mix design methodology for concrete block units. In Proceedings of the 15th International Brick and Block Masonry Conference, Florianapolis, Brazil (pp. 3-6).

(19) El Zareef, M.A., El Madawy, M.E. (2018). Optimization of infill panel for seismic response of multi-story RC frame buildings utilizing multi criteria optimization technique. Bulletin of Earthquake Engineering, 16(10), 4951-4970.

(20) Kumar, B. R., Sandhyarani, D., Scholar, P. (2015). Shear wall analysis and design optimization in case of high rise buildings. International Journal of Scientific & Engineering Research, 6(1), 546-559.

(21) Li, J., Chen, L., Wang, X., & Li, F. (2022). Study and Numerical Analysis on Seismic Performance of Concrete U-Shaped Shear Wall. Advances in Materials Science and Engineering, 2022.

(22) Clemente, P., Buffarini, G. (2010). Base isolation: design and optimization criteria. Seismic Isolation and Protection Systems, 1(1), 17-40.

(23) Marano, G.C., Greco, R., Palombella, G. (2008). Stochastic optimum design of linear tuned mass dampers for seismic protection of high towers. Structural Engineering and Mechanics, 29(6), 603-622.

(24) Islam, A.B.M.S., Jameel, M., Jumaat, M.Z., Rahman, M.M. (2013). Optimization in structural altitude for seismic base isolation at medium risk earthquake disaster region. Disaster Advances, 6(1), 23-34. https://www.researchgate.net/publication/266895951.

(25) Cocco, G., D’Aloisio, A., Spacone, E., Brando, G. (2019). Seismic vulnerability of buildings in historic centers: from the “urban” to the “aggregate” scale. Frontiers in Built Environment, 5, 78.

(26) Labo, S., Passoni, C., Marini, A., Belleri, A., Camata, G., Riva, P., Spacone, E. (2016). Diagrid solutions for a sustainable seismic, energy, and architectural upgrade of European RC buildings. In XII International Conference on Structural Repair and Rehabilitation. PT.

(27) Sorace, S., Terenzi, G. (2014). A viable base isolation strategy for the advanced seismic retrofit of an R/C building. Contemp. Eng. Sci., 7(17-20), 817-834.

(28) De Domenico, D., Impollonia, N., Ricciardi, G. (2019). Seismic retrofitting of confined masonry-RC buildings: The case study of the university hall of residence in Messina, Italy. International Journal of Earthquake Engineering. 36(1):54-85.

(29) Sorace, S., Terenzi, G. (2016). Analysis and seismic isolation of an older reinforced concrete vaulted building. Contemp. Eng. Sci., 9, 1201-1215.

(30) De Landa, M. (1997). A thousand years of nonlinear history. ISBN(s) 0942299329 0942299310.

(31) Mehta, P.K., Monteiro, P J. (2014). Concrete: microstructure, properties, and materials. McGraw-Hill Education. ISBN: 9780071797870.

(32) Thorat, T.S.V.M., Papal, M., Kacha, V., Sarnobat, T., Gaikwad, S. (2015). Hollow concrete blocks-A new trend. International Journal of Engineering & Research, 5(5), 9-26. ISSN: 2249-6645.

(33) Instituto Nacional de Estadísticas de Chile (INE) (2021). Ministerio de Economía, Fomento y Turismo. Retrieved form https://www.ine.cl/

(34) CCHC (2021). Cámara de la construcción de Chile. Retrieved form https://cchc.cl/.

(35) Gholizadeh, S., Shahrezaei, A.M. (2015). Optimal placement of steel plate shear walls for steel frames by bat algorithm. The Structural Design of Tall and Special Buildings, 24(1), 1-18.

(36) Güney, D., Kuruşçu, A.O. (2011). Optimization of the configuration of infill walls in order to increase seismic resistance of building structures. Int. J. Phys. Sci., 6(4), 698-706. http://www.academicjournals.org/IJPS.

(37) Hashemi, S.A. (2007). Seismic evaluation of reinforced concrete buildings including effects of masonry infill walls. University of California, Berkeley. PEER Report 2007/100.

(38) Generador de Precios (2021). CYPE Ingenieros, S.A. Retrieved form http://www.chile.generadordeprecios.info/.

(39) Domínguez, D., Munoz, V.P., Munoz, V.L. (2017). Impact of using lightweight eco-bricks as enclosures for individual houses of one story on zones of high seismicity. Materiales de Construcción, 67(328), e133.

(40) Mir, B.A. (2015). Some studies on the effect of fly ash and lime on physical and mechanical properties of expansive clay. International Journal of Civil Engineering, 13(3), 203-212. IJCE 2015, 13(3 And 4B): 203-212.

(41) Domínguez, D., López-Almansa, F., Benavent Climent, A. (2014). Comportamiento, para el terremoto de Lorca de 11-05-2011, de edificios de vigas planas proyectados sin tener en cuenta la acción sísmica.

(42) Zhu, L., Dai, J., Bai, G., Zhang, F. (2015). Study on thermal properties of recycled aggregate concrete and recycled concrete blocks. Construction and Building Materials, 94, 620-628.

(43) Miličević, I., Bjegović, D., Siddique, R. (2015). Experimental research of concrete floor blocks with crushed bricks and tiles aggregate. Construction and Building materials, 94, 775-783.


(44) Pastor, J.M., García, L.D., Quintana, S., Peña, J. (2014). Glass reinforced concrete panels containing recycled tyres: Evaluation of the acoustic properties of for their use as sound barriers. Construction and Building Materials, 54, 541-549.

(45) Ergün, A. (2011). Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Construction and building materials, 25(2), 806-812.

(46) Mindess, S., Vondran, G. (1988). Properties of concrete reinforced with fibrillated polypropylene fibres under impact loading. Cement and Concrete Research, 18(1), 109-115.

(47) Bayasi, Z., McIntyre, M. (2002). Application of fibrillated polypropylene fibers for restraint of plastic shrinkage cracking in silica fume concrete. Materials Journal, 99(4), 337-344. Retrieved from https://www.concrete.org/publications/acimaterialsjournal.aspx

(48) Ashour, S.A., Wafa, F.F. (1993). Flexural behavior of high-strength fiber reinforced concrete beams. Structural Journal, 90(3), 279-287. Retrieved from http://www.concrete.org/PUBS/JOURNALS/SJHOME.ASP.

(49) Oh, B.H. (1992). Flexural analysis of reinforced concrete beams containing steel fibers. Journal of Structural Engineering, 118(10), 2821-2835.

(50) Sabir, B.B., Wild, S., Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites, 23(6), 441-454.

(51) Quaranta, N., Caligaris, M., López, H., Unsen, M., Di Rienzo, H. (2008). Adición de aserrines de descarte en la producción de mampuestos cerámicos. In Actas del Octavo Congreso Internacional de Metalurgia y Materiales.

(52) Nili, M., Sasanipour, H., Aslani, F. (2019). The effect of fine and coarse recycled aggregates on fresh and mechanical properties of self-compacting concrete. Materials, 12(7), 1120.

(53) Xie, J., Zhao, J., Wang, J., Wang, C., Huang, P., Fang, C. (2019). Sulfate resistance of recycled aggregate concrete with GGBS and fly ash-based geopolymer. Materials, 12(8), 1247.

(54) Liu, W., Cao, W., Zhang, J., Qiao, Q., Ma, H. (2016). Seismic performance of composite shear walls constructed using recycled aggregate concrete and different expandable polystyrene configurations. Materials, 9(3), 148.

(55) Ozcelik, R., Dikiciasik, Y., Erdil, E.F. (2017). The development of the buckling restrained braces with new end restrains. Journal of Constructional Steel Research, 138, 208-220.

(56) Qiao, S., Han, X., & Zhou, K. (2017). Bracing configuration and seismic performance of reinforced concrete frame with brace. The Structural Design of Tall and Special Buildings, 26(14), e1381.

(57) Eem, S.H., Jung, H.J., Koo, J.H. (2011). Application of MR elastomers for improving seismic protection of base-isolated structures. IEEE Transactions on Magnetics, 47(10), 2901-2904.

(58) Tomaževič, M., Klemenc, I., Weiss, P. (2009). Seismic upgrading of old masonry buildings by seismic isolation and CFRP laminates: a shaking-table study of reduced scale models. Bulletin of Earthquake Engineering, 7(1), 293-321.

(59) Buchanan, A.H., Bull, D., Dhakal, R., MacRae, G., Palermo, A., Pampanin, S. (2011). Base isolation and damage-resistant technologies for improved seismic performance of buildings. Retrieved from http://hdl.handle.net/10092/10218.

(60) Martinez-Romero, E. (1993). Experiences on the use of supplementary energy dissipators on building structures. Earthquake spectra, 9(3), 581-625.

(61) Miyamoto, H.K., Singh, J.P. (2002). Performance of structures with passive energy dissipators. Earthquake Spectra, 18(1), 105-119.

(62) Mata, P., Barbat, A.H., Oller, S., Boroschek, R. (2008). Constitutive and geometric nonlinear models for the seismic analysis of RC structures with energy dissipators. Archives of Computational Methods in Engineering, 15(4), 489.

(63) Domínguez, D., López-Almansa, F., Benavent-Climent, A. (2016). Would RC wide-beam buildings in Spain have survived Lorca earthquake (11-05-2011)?. Engineering Structures, 108, 134-154.

(64) Domínguez Santos, D.J., López Almansa, F., Benavent Climent, A. (2011). Evaluación del comportamiento sismorresistente de edificios de hormigón con vigas planas. In 4º Congreso nacional de ingeniería sísmica: libro de resumenes: Granada, 18-20 mayo de 2011. Copicentro.

(65) Seismo Soft. A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures (2015). Retrieved from http://www.seismosoft.com (accessed on day, month, year).

(66) Gómez-Martínez, F., Alonso-Durá, A., De Luca, F., & Verderame, G.M. (2016). Seismic performances and behaviour factor of wide-beam and deep-beam RC frames. Engineering Structures, 125, 107-123.

(67) CTE DEB SE F, (Spanish Standard) (2006). Documento Básico. Código Técnico de la Edificación. Seguridad Estructural: Fabrica; Ministerio de Fomento: Madrid, Spain.

(68) EN 1998. Eurocode 8 (2004). Design of structures for earthquake resistance. European Committee for Standarization.

(69) CTE DEB SE AE, (Spanish Standard) (2006). Documento Básico. Código Técnico de la Edificación. Acciones en la edificación; Ministerio de Fomento: Madrid, Spain.

(70) Scott, M.H., Fenves, G.L. (2006). Plastic hinge integration methods for force-based beam-column elements. Journal of Structural Engineering, 132(2), 244-252.

(71) Zienkiewicz, O.C., Taylor, R.L. (2000). The finite element method, vol. 2. Butterworth-Heinemann. ISBN 0 7506 5055 9.

(72) Mander, J.B., Priestley, M.J., Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826.

(73) Bosco, M., Ferrara, E., Ghersi, A., Marino, E.M., Rossi, P.P. (2016). Improvement of the model proposed by Menegotto and Pinto for steel. Engineering Structures, 124, 442-456.

(74) Spacone, E., Filippou, F. (1996, June). Flexibility-based frame models for nonlinear dynamic analysis. In Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico (pp. 23-28).

(75) Scott, M.H., Fenves, G.L., McKenna, F., Filippou, F.C. (2008). Software patterns for nonlinear beam-column models. Journal of Structural Engineering, 134(4), 562-571.

(76) Crisafulli, F.J., Carr, A.J., Park, R. (2000). Analytical modelling of infilled frame structures. Bulletin of the New Zealand society for earthquake engineering, 33(1), 30-47.

(77) Crisafulli, F.J. (1997). Seismic behaviour of reinforced concrete structures with masonry infills.

(78) Calvi, G.M., Priestley, M.J.N., Kowalsky, M.J. (2007). Displacement based seismic design of structures. In New Zealand Conference on Earthquake Engineering (p. 740). IUSS press.

(79) Crisafulli, F.J., Carr, A.J. (2007). Proposed macro-model for the analysis of infilled frame structures. Bulletin of the New Zealand society for earthquake engineering, 40(2), 69-77.

(80) Smyrou, E., Blandon, C., Antoniou, S., Pinho, R., Crisafulli, F. (2011). Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Bulletin of Earthquake Engineering, 9(5), 1519-1534.

(81) Antoniou, S., Pinho, R. (2004). Development and verification of a displacement-based adaptive pushover procedure. Journal of Earthquake Engineering, 8(05), 643-661.

(82) Antoniou, S., Pinho, R. (2004). Advantages and limitations of adaptive and non-adaptive force-based pushover procedures. Journal of Earthquake Engineering, 8(04), 497-522.

(83) Ferracuti, B., Pinho, R., Savoia, M., Francia, R. (2009). Verification of displacement-based adaptive pushover through multi-ground motion incremental dynamic analysis. Engineering Structures, 31(8), 1789-1799.

(84) Pinho, R., Bento, R., Bhatt, C. (2008, January). Assessing the 3D irregular spear building with nonlinear static procedures. In The 14th World Conference on Earthquake Engineering.

(85) Clough, R.W., Penzien, J. (1993). Dynamics of structures, MacGraw-Hill. Inc Editor. ISBN 0071132414, 9780071132411.

(86) Chopra, A.K. (1995). Dynamics of structures theory and. ISBN: 0-13-8552 4-2.

(87) FEMA 356, F. E. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, DC.

(88) ASCE. (2017). ASCE/SEI 41-17. Seismic evaluation and retrofit of existing buildings. Reston, VA, USA: ASCE.

(89) Stavridis, A., Martin, J., & Bose, S. (2017, September). Updating the ASCE 41 provisions for infilled RC frames. In Proceedings of the 2017 SEAOC Convention, San Diego, CA.

(90) Neuenhofer, A., Filippou, F.C. (1997). Evaluation of nonlinear frame finite-element models. Journal of structural engineering, 123(7), 958-966.

(91) Park, Y.J., Ang, A.H.S. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of structural engineering, 111(4), 722-739.

(92) Huang, Z. M., & Chen, T. (2003). Comparison between flexibility-based and stiffness-based nonlinear beam-column elements (J). Engineering Mechanics, 5.

(93) Li, S; Zhai, C.H.; Xie, L.L. (2009). A review of flexibility-based finite element method for beam-column elements. Journal of Harbin Institute of Technology, 1.

(94) Alemdar, B.N., White, D.W. (2005). Displacement, flexibility, and mixed beam-column finite element formulations for distributed plasticity analysis. Journal of Structural Engineering, 131(12), 1811-1819.

(95) P.E. Mergos (2017). Optimum seismic design of reinforced concrete frames according to Eurocode 8 and fib Model Code 2010. Earthquake Eng. Struct. Dyn. 46(7), 1181-1201.



Cómo citar

Domínguez-Santos, D. J. (2023). Optimización y diseño de colocación de muros de relleno en marcos estructurales de 4 y 8 plantas. Informes De La Construcción, 75(570), e497. https://doi.org/10.3989/ic.93713