Infiltration rate performance of buildings in the historic centre of Oporto

Authors

  • S. Alves Instituto Superior Manuel Teixeira Gomes (ISMAT)
  • J. Fernández-Agüera Instituto Universitario de Arquitectura y Ciencias de la Construcción (IUACC), ETSA - Universidad de Sevilla
  • J. J. Sendra Instituto Universitario de Arquitectura y Ciencias de la Construcción (IUACC), ETSA - Universidad de Sevilla

DOI:

https://doi.org/10.3989/ic.13.009

Keywords:

Building retrofitting, historic centres, air infiltration rate, fan pressurization method, energy efficiency

Abstract


This work is part of a major investigation the authors are undertaking aiming to evaluate the energy performance of different retrofitting strategies for housing buildings, in order to establish preferential criteria of intervention according to its climate zone location, morphology, constructive features and patrimonial values. In the historic centre of Oporto, one of the major actions resides on a significant reduction in the heating loads of these distinctive buildings by decreasing the windows infiltration rate. To be able to accurate this potential for energy savings, in situ measurements of the infiltration rate of this houses at present were required, previous to a possible intervention. This article presents the data obtained using a fan pressurization method in two non-refurbished characteristic buildings of the Oporto’s Historic Centre, and analyses the results obtained for both a typical sash window and a casement window. Some relations between these infiltration rates and the buildings morphological and typological characteristics are considered.

Downloads

Download data is not yet available.

References

(1) CEN. (2007). EN 15251-Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting acoustics. European Committee for Standardization (CEN).

(2) De Luxán, M., Vázquez, M., Gómez, G., Román, E., Barbero, M. (2009). Actuaciones con criterios de sostenibilidad en la rehabilitación de viviendas en el centro de Madrid. Madrid: Empresa Municipal de Vivienda y Suelo del Ayuntamiento de Madrid.

(3) WHC. (2006). State of Conservation of World Heritage Properties in Europe: Section II. http://whc.unesco.org/archive/periodicreporting/EUR/cycle01/section2755-summary.pdf

(4) SRU. (2010). Importância Energética de Envolvente dos Edificios. In Reabilitação de Edifícios do Centro Histórico do Porto: Guia de Termos de Referência para o Desempenho Energético-Ambiental, (p. 11). Porto: Porto Vivo, SRU-Sociedade de Reabilitaçao Urbana de Baixa Portuense, S.A.

(5) Parlamento Europeu. (2002, 16 de Dezembro). Directiva 2002/91/CE do Parlamento Europeu e do Conselho relativa ao desempenho energético dos edifícios. Jornal Oficial, nº L 001: 0065-0071

(6) Ministério das obras públicas, transportes e comunicaçoes. (2006, 4 de Abril). Decreto-Lei n.º 80/ 2006 - Regulamento das Características de Comportamento Térmico de Edifícios (RCCTE). Diário da República, nº67: 2468-2513.

(7) Ministério das obras públicas, transportes e comunicaçoes. (2006, 4 de Abril). Decreto-Lei n.º 79/ 2006 - Regulamento dos Sistemas Energéticos de Climatização em Edifícios (RSECE). Diário da República, nº67: 2416-2468.

(8) Ministério da Economia e da Inovaçao. (2006, 4 de Abril) Decreto-Lei n.º 78/ 2006 - Sistema Nacional de Certificação Energética e da Qualidade do Ar Interior nos Edifícios (SCE). Diário da República, nº67: 2411-2415.

(9) Alves, S., Sendra, J.J. (2012). Rehabilitation and Energy efficiency - Methodological strategies for the Historic Centre of Oporto. In Heritage 2012 - Proceedings of the 3rd International Conference Heritage and Sustainable Development. (p. 395). Portugal: Green Lines Institute.

(10) Freire, R. Z., Mazuroski, W., Abadie, M. O., Mendes, N. (2011). Capacitive effect on the heat transfer through building glazing systems. Applied Energy 88(12): 4310-4319. http://dx.doi.org/10.1016/j.apenergy.2011.04.006

(11) Saridar, S., Elkadi, H. (2002) The impact of applying recent façade technology on daylighting performance in buildings in eastern Mediterranean. Building and Environment 37(11): 1205 - 1212. http://dx.doi.org/10.1016/S0360-1323(01)00095-6

(12) Papadopoulos, A.M., Theodosiou, T., Karatzas, K. (2002). Feasibility of energy saving measures in urban buildings - The impact of energy prices and the acceptable pay back criterion. Energy and Buildings 34(5): 455-466. http://dx.doi.org/10.1016/S0378-7788(01)00129-3

(13) Tommerup, H., Svendsen, S. (2006). Energy savings in Danish residential building stock. Energy and Buildings, 38(6): 618-626. http://dx.doi.org/10.1016/j.enbuild.2005.08.017

(14) Domínguez, S., Sendra, J.J., León, A.L., Esquivias, P. M. (2012). Towards an energy demand reduction in social housing buildings: Envelope system optimization strategies. Energies, 5(7): 2263-2287. http://dx.doi.org/10.3390/en5072263

(15) Binamu, A. (2002). Integrating building design properties "air tightness" and ventilation heat recovery for minimum heating energy consumption in cold climates. Dissertation. Tampere: University of Technology.

(16) Jokisalu, J., Kurnitski, J. (2002). Simulation of energy consumption in typical Finnish detached house. Report B74. Helsinki: University of Technology, HVAClaboratory.

(17) Emmerich S.J., Persily A.K. (1998). Energy impacts of infiltration and ventilation in US office buildings using multi-zone airflow simulation. In Proceedings of ASHRAE IAQ and energy 98 conference, (pp. 191-203). New Orleans, LA, USA.

(18) Becker, R. (1979). Window air tightness and its influence on energy saving and minimum required ventilation. Building and Environment, 14(3): 157-165. http://dx.doi.org/10.1016/0360-1323(79)90034-9

(19) Etheridge, D.W., Stanway, R.J. (1988). A parametric study of ventilation as a basis for design. Building and Environment, 23(2): 81-93. http://dx.doi.org/10.1016/0360-1323(88)90022-4

(20) Feustel, H. (1990). Measurements of Air Permeability in Multizone Buildings. Energy and Buildings, 14(12): 103-116. http://dx.doi.org/10.1016/0378-7788(90)90030-M

(21) Kalamees, T. (2007). Air tightness and air leakages of new lightweight single-family detached houses in Estonia. Building and Environment, 42(6): 2369-2377. http://dx.doi.org/10.1016/j.buildenv.2006.06.001

(22) Pinto, M. Viegas, J. de Freitas, V.P. (2011). Air permeability measurements of dwellings and building components in Portugal. Building and Environment, 46(12): 2480-2489. http://dx.doi.org/10.1016/j.buildenv.2011.06.009

(23) Alfano, F.R., Dell'Isola, M., Ficco, M., Tassini, F. (2012). Experimental analysis of air tightness in Mediterranean buildings using the fan pressurization method. Building and Environment, 53: 16-25. http://dx.doi.org/10.1016/j.buildenv.2011.12.017

(24) Dimitroulopoulou, C. (2012). Ventilation in European dwellings: a review. Building and Environment, 47: 109-125. http://dx.doi.org/10.1016/j.buildenv.2011.07.016

(25) Meiss, A., Feijó, J. (2011). Influencia de la ubicación de las aberturas en la eficiencia de la ventilación en viviendas. Informes de la Construcción, 63 (522): 53-60. http://dx.doi.org/10.3989/ic.10.001

(26) Fernandes, E.O. (2011). HOPE project 2004: measurements reports HAB2 and HAB3.

(27) Minneapolis Blower Door™. (2008). Operation Manual for Model 3 and Model 4 Systems. Minneapolis: The Energy Conservatory.

(28) Fernández-Agüera, J., Sendra, J.J., Domínguez, S. (2011). Protocols for measuring the airtightness of multi-dwelling units in Southern Europe. In Proceedings of the 2011 International Conference on Green Buildings and Sustainable Cities. Bologna, Italy.

(29) Fernández-Agüera, J., Suárez, R., Heiselber, P. (2012). Influence of improvement of airtightness on energy retrofit of social Housing, a case study in a Mediterranean climate. In 33rd AIVC Conference and 2nd TightVent Conference. Copenhague, Denmark.

(30) CEN. (2002). EN 13829 - Thermal performance of buildings. Determination of air permeability of buildings. Fan pressurization method. (ISO 9972:1996, modified). European Committee for Standardization (CEN/TC89).

Published

2014-09-30

How to Cite

Alves, S., Fernández-Agüera J., & Sendra, J. J. (2014). Infiltration rate performance of buildings in the historic centre of Oporto. Informes De La Construcción, 66(535), e033. https://doi.org/10.3989/ic.13.009

Issue

Section

Research Articles