Limit Analysis of masonry structures as an unilateral contact problem: a probabilistic approach

Authors

  • F. Magdalena-Layos Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid - Escuela Técnica Superior de Edificación,e Universidad Politécnica de Madrid
  • J. I. Hernando-García Escuela Técnica Superior de Arquitectura – Universidad Politécnica de Madrid

DOI:

https://doi.org/10.3989/ic.13.098

Keywords:

Masonry structures, unilateral contact, friction, Monte Carlo

Abstract


Safety assessment of the historic masonry structures is an open problem. In cases where no slip occurs the application of the standard limit analysis theorems constitutes an excellent tool for its simplicity and robustness. However, if the mechanisms of the onset of collapse involve sliding, it is not guaranteed the existence of a single solution, so it is necessary to look for other ways to treat the uncertainty associated with its multiplicity. We propose a simulation by the Monte Carlo Method for ancient masonry structures modeled as an unilateral contact problem between rigid bodies with friction, as a theoretical basis for further analyses by probabilistic methods computationally less expensive.

Downloads

Download data is not yet available.

References

(1) Kooharian, A. (1952). Limit analysis of voussoir (segmental) and concrete arches. Proceedings of American Concrete Institute, 49(12): 317-328.

(2) Gilbert, M. (2007). Limit analysis applied to masonry arch bridges: state-of-the-art and recent developments. In 5th International Arch Bridges Conference (pp. 13-28).

(3) Huerta, S. (2005). Mecánica de las bóvedas de fábrica: el enfoque del equilibrio. Informes de la Construcción, 56(496): 73-89.

(4) Orduña, A., Lourenço, P.B. (2001). Limit analysis as a tool for the simplified assessment of ancient masonry structures. En Historical Constructions, (pp. 511-520). Guimarães: University of Minho.

(5) Roca, P., Cervera, M., Gariup, G. (2010). Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering, 17(3): 299-325.

(6) D’Ayala, D. F., Tomasoni, E. (2008). The structural behaviour of masonry vaults: Limit state analysis with finite friction. En Structural analysis of historic construction, (pp. 3-19).

(7) Ferris, M. C., Tin-Loi, F. (2001). Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints. International Journal of Mechanical Sciences, 43(1): 209-224.

(8) Fishwick, R.J. (1996). Limit analysis of rigid block structures (Tesis doctoral). Portsmouth: Department of Civil Engineering- University of Portsmouth. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310412.

(9) Gilbert, M., Casapulla, C., Ahmed, H. M. (2006). Limit analysis of masonry block structures with non-associative frictional joints using linear programming. Computers & Structures, 84(13-14): 873-887.

(10) Magdalena, F. (2013). El problema del rozamiento en el análisis de estructuras de fábrica mediante modelos de sólidos rígidos (Tesis doctoral). Madrid: Universidad Politécnica de Madrid.

(11) Orduña, A., Lourenço, P. B. (2005). Three-dimensional limit analysis of rigid blocks assemblages. Part II: Load-path following solution procedure and validation. International journal of solids and structures, 42(18): 5161-5180.

(12) Tran-Cao, T.R.I. (2009). Collapse analysis of block structures in frictional contact (Tesis doctoral). Sydney: The University of New South Wales.

(13) Heyman, J. (2008). The plasticity of unreinforced concrete. Magazine of Concrete Research, 60(8): 555-559.

(14) Ochsendorf, J. A. (2002). Collapse of masonry structures (Tesis doctoral). Cambridge: University of Cambridge.

(15) Cottle, R.W., Pang, J.S., Stone, R.E. (2009). The linear complementarity problem. SIAM Classics in Applied Mathematics.

(16) Garey, M. R., Johnson, D. S. (1979). Computers and intractability. New York: Freeman.

(17) Hu, J., Mitchell, J. E., Pang, J.S., Bennett, K. P., Kunapuli, G. (2008). On the global solution of linear programs with linear complementarity constraints. SIAM Journal on Optimization, 19(1): 445-471.

(18) Büeler, B., Enge, A., Fukuda, K. (2000). Exact volume computation for polytopes: A practical study. In Polytopes - Combinatorics and computation, (pp. 131-154). Basel: Birkhäuser.

(19) Bu.eler, B., Enge, A. (2003). VINCI version 1.0.5, Computing volumes of convex polytopes. Palaiseau-France: Laboratoire d’Informatique École polytechnique (bajo licencia GNU-GPL).

(20) Rubinstein, R.Y., Kroese, D.P. (2007). Simulation and the Monte Carlo method. Wiley. http://dx.doi.org/10.1002/9780470230381

Published

2014-12-30

How to Cite

Magdalena-Layos, F., & Hernando-García, J. I. (2014). Limit Analysis of masonry structures as an unilateral contact problem: a probabilistic approach. Informes De La Construcción, 66(Extra-1), m015. https://doi.org/10.3989/ic.13.098

Issue

Section

Research Articles

Most read articles by the same author(s)