Stack effect analysis in opaque ventilated facades using induced mass flow correlations. Application to the dimensioning of the chamber width

Authors

  • C. Suárez Escuela Superior de Ingenieros - Universidad de Sevilla
  • J. L. Molina Escuela Superior de Ingenieros - Universidad de Sevilla

DOI:

https://doi.org/10.3989/ic.13.155

Keywords:

Ventilated facades, stack effect, CFD, induced mass flow

Abstract


A general analysis of the stack effect problem applied to opaque ventilated facades is made in this paper. From an energetic point of view, the design and optimization of ventilated facades, require a deep understanding of the thermal and fluid dynamic phenomena that take place in the air gap, and, due to the complexity of these phenomena, the optimal design is a challenge to architects and engineers. As a main result, useful correlations for calculating the induced mass flow into the ventilated cavity are proposed depending on the geometry and the temperature difference. The set of application of the correlation covers the usual range of interest in opaque ventilated facades. It is also made a sensitive analysis of the induced flow with the indicated parameters.

Downloads

Download data is not yet available.

References

(1) Gagliano, A., Patania, F., Ferlito, A. Nocera, F., Galesi, A.. (2011). Computational Fluid Dynamic Simulations of Natural Convection in Ventilated Facades. En Amimul, A. (Ed.) Evaporation, Condensation and Heat transfer. http://dx.doi.org/10.5772/19817

(2) Irulegi, O., Serra, A.,Hernández, R., Ruiz-Pardo, A., Torres, L. (2012). Fachadas ventiladas activas para reducir la demanda de calefacción en los edificios de oficinas. El caso de Espa-a. Informes de la Construcción, 64(528): 575-585. http://dx.doi.org/10.3989/ic.11.099

(3) Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings, 34(5): 469-475. http://dx.doi.org/10.1016/S0378-7788(01)00130-X

(4) Marinosci, C., Strachan, P., Semprini, G., Morini, G. L. (2011). Empirical validation and modelling of a naturally ventilated rainscreen facade building. Energy and Buildings, 43(4): 853-863. http://dx.doi.org/10.1016/j.enbuild.2010.12.005

(5) Ruiz-Pardo, A. (2008). Ahorro energético mediante el uso de elementos de doble envolvente transparente-opaco (Tesis Doctoral). Sevilla, Espa-a: Universidad de Sevilla.

(6) Suárez, Ch. (2013). Modelización CFD de los flujos de calor y masa en cámaras de aire. Aplicación al cálculo de coeficientes convectivos y flujos de aire en fachadas ventiladas (Tesis Doctoral). Sevilla, Espa-a: Universidad de Sevilla.

(7) Kheireddine, A.S., Houla Sanda, M., Chaturvedi, S.K., Mohieidin, T.O. (1997). Numerical Prediction Of Pressure Loss Coefficient And Induced Mass Flux For Laminar Natural Convective Flow In A Vertical Channel. Energy 22(4): 413–423. http://dx.doi.org/10.1016/0360-5442(95)00060-7

(8) Kettleborough, C.F. (1972). Transient Laminar Free Convection Between Heated Vertical Plates Including Entrance effects. Int. J. Heat Mass Transfer, 15(5): 883-896. http://dx.doi.org/10.1016/0017-9310(72)90228-1

(9) Nakamura, H., Asako, Y., Naitou, T. (1982). Heat Transfer by Free Convection Between Two Parallel Flat Plates. Numer. Heat Transfer 5(1): 95-106. http://dx.doi.org/10.1080/10407788208913437

(10) Naylor, D., Floryan, J. M., Tarasuk, J. D. (1991). A Numerical Study of Developing Free Convection Between Isothermal Vertical Plates. ASME J. Heat Transfer, 113(3): 620-626. http://dx.doi.org/10.1115/1.2910610

(11) Chang, T. S., Lin, T. F. (1989). Transient Buoyancy-Induced Flow Through a Heated, Vertical Channel of Finite Height. Numer. Heat Transfer, 16 (1) 15–35. http://dx.doi.org/10.1080/10407788908944704

(12) Ramanathan, S., Kumar, R. (1991). Correlations for Natural Convection Between Heated Vertical Plates. ASME J. Heat Transfer, 113(1): 97-107. http://dx.doi.org/10.1115/1.2910557

(13) Shyy, W., Gingrich, W. K., Gebhart, B. (1992). Adaptive Grid Solution for Buoyancy-Induced Flow in Vertical Slots. Numer. Heat Transfer. Part A, 22(1): 51-70.

(14) Morrone, B., Campo, A., Manca, O. (1997). Optimum Plate Separation in Vertical Parallel-Plate Channels for Natural Convective Flows: Incorporation of Large Spaces at the Channel Extremes. Int. J. Heat Mass Transfer, 40(5): 993-1000. http://dx.doi.org/10.1016/0017-9310(96)00197-4

(15) Campo, A., Manca, O., Morrone, B. (1999). Numerical Analysis of Partially Heated Vertical Parallel Plates in Natural Convective Cooling. Numer. Heat Transfer, Part A, 36(2): 129-151.

(16) Ayinde, T. F., Said, S. A. M., Habib, M. A. (2006). Experimental investigation of turbulent natural convection flow in a channel. Heat Mass Transfer, 42(3): 169-177. http://dx.doi.org/10.1007/s00231-005-0017-2

(17) Carl-Olof Olsson. (2004). Prediction of Nusselt Number and Flow Rate of Buoyancy Driven Flow Between Vertical Parallel Plates. Transactions of the ASME. Serie C: Journal of heat transfer, 126(1): 97-104. http://dx.doi.org/10.1115/1.1643908

Published

2015-06-30

How to Cite

Suárez, C., & Molina, J. L. (2015). Stack effect analysis in opaque ventilated facades using induced mass flow correlations. Application to the dimensioning of the chamber width. Informes De La Construcción, 67(538), e087. https://doi.org/10.3989/ic.13.155

Issue

Section

Research Articles