Integrated scalar and vector method for fire risk assessment of lifecycle construction
DOI:
https://doi.org/10.3989/ic.14.154Keywords:
Fire prevention, fire risk assessment, modelling and simulation, FDS (Fire Dynamics Simulation), lifecycle installationAbstract
Fire is one the main risks in the construction sector. Consequences as material losses, stoppage and possible personal damages cause the fire risk assessment and knowledge of building behaviour in fire situation are essential to prevent and minimize the consequences. Currently there are sets of conventional scalar methods that quantify the risk level and provide different protection standards. At the same time, procedures for Modelling and Computer Simulation of Fire based on vector methods are under development, which provide multidimensional information about the fire. The aim of this work is to establish an integration model of design and assessment with scalar and vector technics for increase the knowledge about the fire risk (both development and evolution processes), supply full information on the development of fire in all lifecycle stage’s installation. This model will support the task of Project Manager and Experts in prevention of occupational Risks.
Downloads
References
(1) Calvo-Barrios, A. (1993). La prevención contra el fuego en la construcción. Informes de la Construcción, 44(423): 23-31. http://dx.doi.org/10.3989/ic.1993.v44.i423.1204
(2) Miguel-Rodríguez, JL. (2012). De la resistencia a fuego en los edificios. Informes de la Construcción, 39(391): 5-19. http://dx.doi.org/10.3989/ic.1987.v39.i391.1621
(3) INSHT. (2001). NTP 599: Evaluación del riesgo de incendio: criterios. Instituto Nacional de Seguridad e Higiene en el Trabajo.
(4) Alvarez-Rodriguez, A. (2012).An integrated framework for the next generation of risk-informed performance-based design approach used in fire safety engineering. Worcester, MA (USA): Worcester Polytechnic Institute.
(5) Šakėnaitė, J. (2010). A Comparison of Methods Used for Fire Safety Evaluation. Mokslas-Lietuvos ateitis, 2(6): 36-42.
(6) Ministerio de Fomento. (2010).Documento Básico SI, Seguridad en caso de incendio.
(7) Ministerio de Industria, Turismo y Comercio. (2004). RD2267/2004 de 3 de diciembre, por el que se aprueba el Reglamento de seguridad CI en los establecimientos industriales. Boletín Oficial del Estado, nº 303, pp. 41194-41255. Espa-a.
(8) Fundación MAPFRE. (1998). Método Simplificado de Evaluación del Riesgo de Incendio: MESERI. GR, 64: 17-29.
(9) Pe-a, JF., Carlos, J., Romero, R. (2003). Análisis comparativo de los principales métodos de evaluación del riesgo de incendio. Seguridad y Salud en el Trabajo, (25):12-17.
(10) Rubio-Romero, J. C. (2004). Métodos de Evaluación de Riesgos Laborales. Madrid: Ediciones Díaz de Santos.
(11) INSHT. (1984). NTP 100: Evaluación del riesgo de incendio. Método de Gustav Purt. Instituto Nacional de Seguridad e Higiene en el Trabajo.
(12) Fuertes-Pe-a, J. (2007). FRAME (for) Engineering. Málaga: Universidad de Málaga.
(13) Smet, E. (2011). FRAME: Manual del usuario. http://www.framemethod.net/index_html_files/FRAME 2011 ManualES.pdf
(14) Ramírez, A. (2012). Estudio de la evacuación de ocupantes y control de humo en edificio en altura (Tesis de máster). Madrid: ICAI, Escuela Técnica Superior de Ingeniería – Univ. Pontificia Comillas.
(15) Alvear, D. (2007). Modelado y simulación computacional de incendios en la edificación. Madrid: Ediciones Díaz de Santos.
(16) Díaz, P.R., Servicio, R., Grau, X. (2013). Simulación, dise-o SCTECH en centro deportivo. Tecnifuego-AESPI, (31): 34-37.
(17) Walton, W.D., Budnick, E.K. (1997). Deterministic Computer Fire Models. En Fire Protection Handbook (18th ed). Sección 11, Cap. 5, pp. 55-61. USA: National Fire Protection Association.
(18) Watts, J. (2002). Probabilistic fire models. En Fire Protection Handbook. Sección 11, Cap. 6, pp. 62-69. USA: National Fire Protection Association.
(19) Jiménez-Castellanos, F. (2012).Simulación numérica de incendios en edificios tipo atrio. ICAI – Universidad Pontificia de Comillas. PMCid:PMC3366875
(20) Cooper, L.Y. (1982). A mathematical model for estimating available safe egress time in fires. Fire and Materials, 6(3- 4):135-144.
(21) Cadorin, J.-F. (2003). Compartment Fire Models for Structural Engineering (Tesis doctoral). Liège: Université de Liège.
(22) Technology NIOSA. (2010). Fire Growth and Smoke Transport Modeling with CFAST. http://www.nist.gov/el/fire_research/cfast.cfm.
(23) Peacock, R.D., Forney, G.P., Reneke, P.A., Jones, W.W. (2011). CFAST. http://www.nist.gov/el/fire_research/cfast-software.cfm.
(24) PyroSim - ThunderHead Engineering. (2013). Fire Dynamics and Smoke Control. http://www.thunderheadeng.com/pyrosim/.
(25) Drysdale, D. (2011). An Introduction to Fire Dynamics. Hoboken, NJ: Wiley. http://dx.doi.org/10.1002/9781119975465
(26) McGrattan, K., Forney, G. (2013). FDS and Smokeview. http://www.nist.gov/el/fire_research/fds_smokeview.cfm.
(27) Rubini, P. (2014). SOFIE: simulation of fires in enclosures. http://www.hull.ac.uk/php/331346/sofie.htm.
(28) Cox, C., Kumar, S. (2007). Combustion Science and Engineering: JASMINE.[software]
(29) U.S. NRC. (2007). Fire Dynamics Simulator (FDS). En Verification & Validation of Selected Fire Models for Nuclear Power Plant Applications, Vol. 7 (Final Report). Washington: U.S. Nuclear Regulatory Commission
(30) McGrattan, K., McDermott, R., Hostikka, S., Floyd, J. (2010). Fire Dynamics Simulator (V5). User's Guide. U.S. Government Printing Office.
(31) Mott MacDonald Group. (2014).STEPS: simulating pedestrian dynamics.[Software]
(32) Soclutions IE. (2014).SIMULEX[software]. Available from: http://www.iesve.com/software
(33) Kisko, T., Francis, R. L., Nobel, C. R. (2014). EVACNET4 [software].
(34) Korhonen, T. (2009). Fire Dynamics Simulator with Evacuation. http://www.vtt.fi/inf/pdf/workingpapers/2009/W119.pdf
(35) Esteban, J., Ros, A., Sanz, M., Lozano, R.V. (2013). La integración de la prevención en la fase de dise-o. El papel del Proyectista en Espa-a y en los países de la Europa de los 15. Informes de la Construcción, 65(532): 545-555. http://dx.doi.org/10.3989/ic.12.076
(36) Gascón y Marín Pérez J. (1993). El ingeniero y la seguridad: la seguridad integrada. Informes de la Construcción, 44(423): 17-22. http://dx.doi.org/10.3989/ic.1993.v44.i423.1203
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.