Density estimation by screw withdrawal resistance and probing in structural sawn coniferous timber, and modulus of elasticity assessment
DOI:
https://doi.org/10.3989/ic.2007.v59.i506.513Keywords:
screw withdrawal, pilodyn density, penetration depth, non-destructive, woodAbstract
The results of probing 395 sawn pieces of Radiata pine (Pinus radiata D. Don), Scots pine (Pinus sylvestris L.) and Laricio pine (Pinus nigra Arn. ssp. salzmannii) from Spanish sources are presented. Specimens had a cross section from 150 x 200 mm, 150 x 250 mm, and 200 x 250 mm. The Screw Withdrawal Force Meter (SWFM) developed by the Wood NDT Laboratory of the University of Western Hungary, in Sopron, and the Pilodyn 6J Wood Tester by Proceq, are the items of equipment used to measure screw withdrawal force and penetration depth, respectively.
Based on our results, this paper concludes that for structural coniferous timber the density values estimated from probing measurements are reliable. There is a positive correlation between non-destructive parameters and density (a coefficient of determination r2 of 48.5% to 49.9% is obtained). The authors believe that it is possible to use probing with ultrasonic methods as a good combined nondestructive technique to improve the results of visual grading and modulus of elasticity assessment, at least as an additional parameter in structural sawn timber.
Downloads
References
(1) Ross, Rober J. Pellerin, Roy F.: “Nondestructive testing for assessing wood members in structures”. USDA. FPL-GTR-70. 1994), pp. 1-40.
(2) Arriaga, F. Esteban, M, Relea, E.: “Evaluation of the load carrying capacity of large section coniferous timber in standing structures”. Mater. Construcc. Vol. 55, nº 280 (2005), pp. 43-52.
(3) Rammer, Douglas R. Zelinka, Samuel L.: “Review of End Grain Nail Withdrawal Research”. USDA. FPL-GTR-151. (2004), pp. 28.
(4) Walter, I.T.G. Norton, B. Lavery, D.J. Chapman, M.J.: “Screw ingress torque as a non-destructive determinant of timber compressive strength”. Proceedings of the 14 th International Symposium on Nondestructive Testing of Wood. (2005), pp. 144-145.
(5) Divos, F; Tanaka, T.: “Lumber Strength Estimation by Multiple Regression. Published in International Journal of the Biology, Chemistry, Physics and Technology of Wood”, Holz Forschung. Vol. 51, nº 5. (1997), pp. 467-471
(6) Divos, F. Tanaka, T. Nagao, H. Kato, H.: “Determination of shear modulus on construction size timber”. Wood science and technology. Vol. 32 (6) (1998), pp. 393-402.
(7) Greaves BL, Borralho NMG, Raymond CA, Farrington A.: “Use of a Pilodyn for the indirect selection of basic density in Eucalyptus nitens”. Canadian Journal of Forest Research. Vol. 26 (9) (1996), pp. 1643-1650. doi:10.1139/x26-185
(8) Watt M.S., Garnett B.T., Walker JCF. 1996. “The use of the pilodyn for assessing outerwood density in New Zealand radiata pine”. Forest Products Journal. Vol. 46 (11-12) (1996), pp. 101-106
(9) Raymond C.A., Muneri A., MacDonald A.C.: “Non-destructive sampling for basic density in Eucalyptus globulus and E-nitens”. Appita Journal. Vol. 51 (3) (1998), pp. 224-228.
(10) Wang T., Aitken S.N., Rozenberg P., Carlson M.R.: “Selection for height growth and Pilodyn pin penetration in lodgepole pine: effects on growth traits, wood properties, and their relationships”. Canadian Journal of Forest Research, Vol. 29 (4) (1999), pp. 434-445. doi:10.1139/cjfr-29-4-434
(11) Silva J.C.E., Borralho N.M.G., Wellendorf H.: “Genetic parameter estimates for diameter growth, pilodyn penetration and spiral grain in Picea abies (L.)” Karst. Silvae Genetica, Vol. 49 (1) (2000).
(12) López, J.A. y Staffi eri, G.M.: “Correlaciones genéticas entre Pilodyn y densidad de la madera de Pinus elliottii var. elliottii en la Mesopotamia Argentina”. Novenas Jornadas Técnicas Forestales. INTA-FCF-MEYRNRYT-Eldorado, Misiones, Argentina (2002).
(13) Niemz P., Kucera L.J., Bernatowicz G.: “Investigation of the spruce wood quality degraded by the brown-rot fungi”. Drevarsky Vyskum. Vol. 43 (1) (1998), pp.1-12.
(14) Smith, S.M. Morrell, J.J.: “Correcting pilodyn measurement of Douglas fi r for different moisture levels”. Forest Products Journal. Vol. 36 (1) (1986), pp.45-46.
(15) Esteban, M.: “Determinación de la capacidad resistente de la madera estructural de gran escuadría y su aplicación en estructuras existentes de madera de conífera”. Tesis Doctoral. ETSI de Montes, UPM. (2003)
(16) Arriaga, F; Esteban, M; Relea, E.: “Evaluación de la Capacidad portante de piezas de gruesa escuadría de madera de conífera en estructuras existentes”. Mater. Construcc. Vol. 55, nº 280 (2005), pp: 43- 52.
(17) Green, D.W.; McDonald, K.A.: “Investigation of the mechanical properties of red oak 2 by 4´s”. Wood and Fiber Science. Vol. 25(1) (1993a), pp. 35-45.
(18) Green, D.W.; McDonald, K.A.: “Mechanical properties of red maple structural lumber”. Wood and Fiber Science. Vol. 25(4) (1993b), pp. 365-374.
(19) Casas, L.: “Parámetros indirectos de clasifi cación en piezas de madera estructural puesta en servicio. Análisis y correlación con la capacidad resistente real”. Trabajo Fin de Carrera. EUIT Forestal – UPM (2005).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.