Real test-bed studies at the ETH House of Natural Resources – wood surface protection for outdoor applications

Authors

DOI:

https://doi.org/10.3989/id.55202

Keywords:

wood surface modification, façade, UV-stability, weathering, living lab, ETH House of Natural Resources (ETH HoNR)

Abstract


The increasing demand for sustainable construction materials used in urban areas calls for novel wood protective coatings, which retain the natural appearance of wood while minimizing maintenance intervals. This work reports on three different wood surface modification processes and evaluates their protective effect against weathering after installation at a testing façade of the ETH House of Natural Resources (HoNR), a recently opened living lab located in Zürich, Switzerland. We monitored the discoloration upon outdoor exposure of subsequently improved generations of thin metal oxide coatings developed in our lab. We target almost transparent and durable coatings with water repellent properties to diminish discoloration due to UV light and biological attack. This should lead to wooden facades with increased reliability and thereby boost an enhanced utilization of the renewable and CO2 storing resource wood.

Downloads

Download data is not yet available.

References

(1) Deka, M., Humar, M., Rep, G., Kricej, B., Sentjurc, M. S., Petric, M. (2008). Effects of UV light irradiation on colour stability of thermally modified, copper ethanolamine treated and non-modified wood: EPR and DRIFT spectroscopic studies. Wood Science and Technology, 42(1): 5-20. https://doi.org/10.1007/s00226-007-0147-4

(2) Feist, W. C., Hon, D. N. S. (1984). Chemistry of Weathering and Protection. Rowell R. (Ed.), The Chemistry of Solid Wood (pp. 401-451). American Chemical Society. https://doi.org/10.1021/ba-1984-0207.ch011

(3) Müller, U., Rätzsch, M., Schwanninger, M., Steiner, M., Zöbl, H. (2003). Yellowing and IR-changes of spruce wood as result of UV-irradiation. Journal of Photochemistry and Photobiology B: Biology, 69(2): 97-105. https://doi.org/10.1016/S1011-1344(02)00412-8

(4) Evans, P. D. (2008). Weathering and Photoprotection of Wood. In Schultz T. P., Militz H., Freeman M., Goodell B., Nicholas D. (Ed.), Development of Commercial Wood Preservatives (pp. 69-117): American Chemical Society. https://doi.org/10.1021/bk-2008-0982.ch005

(5) Zahri, S., Belloncle, C., Charrier, F., Pardon, P., Quideau, S., Charrier, B. (2007). UV light impact on ellagitannins and wood surface colour of European oak (Quercus petraea and Quercus robur). Applied Surface Science, 253(11): 4985-4989. https://doi.org/10.1016/j.apsusc.2006.11.005

(6) George, B., Suttie, E., Merlin, A., Deglise, X. (2005). Photodegradation and photostabilisation of wood – the state of the art. Polymer Degradation and Stability, 88(2): 268-274. https://doi.org/10.1016/j.polymdegradstab.2004.10.018

(7) Liu, Y., Shao, L., Gao, J., Guo, H., Chen, Y., Cheng, Q., et al. (2015). Surface photo-discoloration and degradation of dyed wood veneer exposed to different wavelengths of artificial light. Applied Surface Science, 331: 353-361. https://doi.org/10.1016/j.apsusc.2015.01.091

(8) Hernandez, V. A., Evans, P. D. (2015). Technical note: melanization of the wood-staining fungus Aureobasidium pullulans in response to UV radiation. Wood and Fiber Science, 47(1): 120-124, https://wfs.swst.org/index.php/wfs/article/view/2204.

(9) Auclair, N., Riedl, B., Blanchard, V., Blanchet, P. (2011). Improvement of Photoprotection of Wood Coatings by Using Inorganic Nanoparticles as Ultraviolet Absorbers. Forest Products Journal, 61(1): 20-27. https://doi.org/10.13073/0015-7473-61.1.20

(10) Weichelt, F., Emmler, R., Flyunt, R., Beyer, E., Buchmeiser, M. R., Beyer, M. (2010). ZnO-Based UV Nanocomposites for Wood Coatings in Outdoor Applications. Macromolecular Materials and Engineering, 295(2): 130-136.

(11) Salla, J., Pandey, K. K., Srinivas, K. (2012). Improvement of UV resistance of wood surfaces by using ZnO nanoparticles. Polymer Degradation and Stability, 97(4): 592-596. https://doi.org/10.1016/j.polymdegradstab.2012.01.013

(12) Veronovski, N., Verhovsek, D., Godnjavec, J. (2013). Tohe influence of surface-treated nano-TiO2 (rutile) incorporation in water-based acrylic coatings on wood protectin. Wood Science and Technology, 47(2): 317-328. https://doi.org/10.1007/s00226-012-0498-3

(13) Auffan, M., Masion, A., Labille, J., Diot, M. A., Liu, W., Olivi, L., et al. (2014). Long-term aging of a CeO2 based nanocomposite used for wood protection. Environmental Pollution, 188: 1-7. https://doi.org/10.1016/j.envpol.2014.01.016 PMid:24518963

(14) Grüneberger, F., Künniger, T., Zimmermann, T., Arnold, M. (2014). Nanofibrillated cellulose in wood coatings: mechanical properties of free composite films. Journal of Materials Science, 49(18): 6437-6448. https://doi.org/10.1007/s10853-014-8373-2

(15) Grüneberger, F., Künniger, T., Zimmermann, T., Arnold, M. (2014). Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose, 21(3): 1313-1326. https://doi.org/10.1007/s10570-014-0248-9

(16) Yu, Y., Jiang, Z., Wang, G., Song, Y. (2010). Growth of ZnO nanofilms on wood with improved photostability. Holzforschung, 64(3): 385-390. https://doi.org/10.1515/hf.2010.049

(17) Sun, Q. F., Lu, Y., Zhang, H. M., Yang, D. J., Wang, Y., Xu, J. S., et al. (2012). Improved UV resistance in wood through the hydrothermal growth of highly ordered ZnO nanorod arrays. Journal of Materials Science, 47(10): 4457-4462. https://doi.org/10.1007/s10853-012-6304-7

(18) Liu, Y., Fu, Y., Yu, H., Liu, Y. (2013). Process of in situ forming well-aligned zinc oxide nanorod arrays on wood substrate using a two-step bottom-up method. Journal of Colloid and Interface Science, 407: 116-121. https://doi.org/10.1016/j.jcis.2013.06.043 PMid:23880522

(19) Guo, H., Fuchs, P., Cabane, E., Michen, B., Hagendorfer, H., Romanyuk Yaroslav, E., et al. (2016). UV-protection of wood surfaces by controlled morphology fine-tuning of ZnO nanostructures. Holzforschung, 70(8): 699-708. https://doi.org/10.1515/hf-2015-0185

(20) Guo, H., Fuchs, P., Casdorff, K., Michen, B., Chanana, M., Hagendorfer, H., et al. (2017). Bio-Inspired Superhydrophobic and Omniphobic Wood Surfaces. Advanced Materials Interfaces, 4(1): 1600289. https://doi.org/10.1002/admi.201600289

(21) Jirous-Rajkovic, V., Turkulin, H., Miller, E. R. (2004). Depth profile of UV-induced wood surface degradation. Surface Coatings International Part B : Coatings Transactions, 87(4): 241-247. https://doi.org/10.1007/BF02699671

(22) Rosu, D., Teaca, C.-A., Bodirlau, R., Rosu, L. (2010). FTIR and color change of the modified wood as a result of artificial light irradiation. Journal of Photochemistry and Photobiology B: Biology, 99(3): 144-149. https://doi.org/10.1016/j.jphotobiol.2010.03.010 PMid:20392648

Published

2017-12-30

How to Cite

Guo, H., Michen, B., & Burgert, I. (2017). Real test-bed studies at the ETH House of Natural Resources – wood surface protection for outdoor applications. Informes De La Construcción, 69(548), e220. https://doi.org/10.3989/id.55202

Issue

Section

Research Articles