Thermochromic mortar façade coating: impact on the building energy performance

Authors

DOI:

https://doi.org/10.3989/ic.69899

Keywords:

Building energy efficiency, thermochromic materials, building adaptative façades, variable reflectivity

Abstract


Thermochromic materials, with optical properties changing with temperature, optimize the use of solar energy by the building envelope for the improvement of energy efficiency. The purpose of this research is to determine the impact of a thermochromic mortar (TM) façade coating on the building energy performance in a Mediterranean climate. A new calculation methodology is proposed to implement the dynamical optical properties of the mortar in conventional energetic simulation tools. This study considers a coating with variable optical properties that move from 0,65 to 0,60 solar absorptance value, and a transition temperature moving from 20ºC to 35ºC. The mortar shows a dark grey colour for low temperatures and a light colour for high temperatures. The building with TM coating shows a 3 % lower yearly energy demand than the building with non-variable optical properties, with a maximum heating demand reduction reaching 8 %.

Downloads

Download data is not yet available.

References

(1) European Commission. Energy efficient buildings. Retreived from http://ec.europa.eu/energy/en/topics/energy-efficiency/buildings

(2) STRATEGO (2015). Enhanced heating and cooling plans for 2010 and 2050, co-founded by the Intelligent Europe Programme, Project number IEE/13/650.

(3) O'Malley, C., Piroozfar, P., Farr, E.R.P., & Pomponi, F. (2015). Urban Heat Island (UHI) mitigating strategies: A case based comparative analysis. Sustainable cities and society, 19: 222-235. https://doi.org/10.1016/j.scs.2015.05.009

(4) Gavira, M.J., Pérez, G., Guerrero, A. (2016). Influence of the optical properties of facade coating on the building energy demand. In 41st IAHS World Congress on Housing. ITeCons. Sustainability and Energy Efficiency, ID 13. ISBN: 978-989-98949-4-5

(5) Alchapar, N., Correa, E. (2015). Reflectancia solar de las envolventes opacas de la ciudad y su efecto sobre las temperaturas urbanas. Informes de la Construcción, 67(540): e112. https://doi.org/10.3989/ic.14.131

(6) Zinzi, M. (2016). Characterisation and assessment of near infrared reflective paintings for building façade applications. Energy and Buildings, 114: 206-213. https://doi.org/10.1016/j.enbuild.2015.05.048

(7) Antonaia, A., Ascione, F., Castaldo, A., D'Angelo, A., De Masi, R.F., Ferrara, M., Vitiello, G. (2016). Cool materials for reducing summer energy consumptions in Mediterranean climate: In-lab experiments and numerical analysis of a new coating based on acrylic paint. Applied Thermal Engineering, 102: 91-107. https://doi.org/10.1016/j.applthermaleng.2016.03.111

(8) Pisello, A.L. (2017). State of the art on the development of cool coatings for buildings and cities. Solar Energy, 144: 660-680. https://doi.org/10.1016/j.solener.2017.01.068

(9) Zinzi, M. (2016). Exploring the potentialities of cool façades to improve the thermal response of Mediterranean residential buildings. Solar Energy, 135: 386-397. https://doi.org/10.1016/j.solener.2016.06.021

(10) Perez, G., Allegro, V.R., Corroto, M., Pons, A., Guerrero, A. (2018). Smart reversible thermochromic mortar for improvement of energy efficiency in Buildings. Construction and Building Materials, 186: 884-891. https://doi.org/10.1016/j.conbuildmat.2018.07.246

(11) Testa, J., & Krarti, M. (2017). A review of benefits and limitations of static and switchable cool roof systems. Renewable and Sustainable Energy Reviews, 77: 451-460. https://doi.org/10.1016/j.rser.2017.04.030

(12) Gavira-Galocha, M.J., Pérez-Álvarez-Quiñones, G., & Acha-Román, C. (2018). Comparative study of the optical properties effect of the façade exterior coating on the building energy demand. Dyna (Spain), 94(2): 216-220. https://doi.org/10.6036/8487

(13) Orden FOM/1635/2013, de 10 de septiembre, por la que se actualiza el Documento Básico DB-HE «Ahorro de Energía», del Código Técnico de la Edificación, aprobado por Real Decreto 314/2006, de 17 de marzo.

(14) Ministerio de Fomento (2008). Atlas estadísticos de la construcción en España. Madrid: Ministerio de Fomento. Secretaría General Técnica.

(15) Ministerio de Fomento. Dirección General de Arquitectura, Vivienda y Suelo (2015) Observatorio de Vivienda y Suelo. Boletín Anual 2014. Madrid: Ministerio de Fomento, Centro de publicaciones. Disponible en https://apps.fomento.gob.es/CVP/detallepublicacion.aspx?idpub=BAW029

(16) IDAE (2011). Proyecto SECH-SPAHOUSEC: Análisis del consumo energético del sector residencial en España. Madrid: Instituto para la Diversificación y Ahorro de la Energía. Ministerio de Industria, Energía y Turismo.

(17) Dirección General de Arquitectura, Vivienda y Suelo del Ministerio de Fomento. (2014). Estrategia a largo plazo para la rehabilitación energética en el sector de la edificación en España, en desarrollo del artículo 4 de la Directiva 2012/27/UE. Madrid: Ministerio de Fomento.

(18) Gavira-Galocha, M.J., Pérez-Álvarez-Quiñones, G., & Acha-Román, C., Guerrero, A. (2017). Color change temperature in thermochromic façades for the energy efficiency of buildings. In Congreso ABS, Advanced Building Skins Conference. Bern, Switzerland.

(19) UNE-EN 410: 1998. Vidrio para la edificación. Determinación de las características luminosas y solares de los acristalamientos.

(20) Park, B., & Krarti, M. (2016). Energy performance analysis of variable reflectivity envelope systems for commercial buildings. Energy and Buildings, 124: 88-98. https://doi.org/10.1016/j.enbuild.2016.04.070

Published

2020-06-30

How to Cite

Gavira, M. J., Pérez, G., Acha, C., & Guerrero, A. (2020). Thermochromic mortar façade coating: impact on the building energy performance. Informes De La Construcción, 72(558), e340. https://doi.org/10.3989/ic.69899

Issue

Section

Research Articles

Most read articles by the same author(s)