Optimización de secciones CFS bajo flexión usando el Algoritmo Genético

Autores/as

DOI:

https://doi.org/10.3989/ic.76866

Palabras clave:

Optimización, Sección conformada en I con perfiles huecos rectangulares, Algoritmo genético, Eurocódigo 3

Resumen


La tendencia actual en los diseños de la ingeniería estructural es el abaratamiento de los sistemas estructurales mediante la optimización de sus elementos. En este trabajo se emplean métodos numéricos para obtener las dimensiones óptimas de secciones conformadas en frío (CFS) tipo C, Z y en I con perfiles huecos rectangulares (RHFB) que se usan para piezas en flexión. Para la optimización se usaron dos parámetros, la relación entre la dimensión del alma y la longitud del desarrollo (k) y la relación entre la longitud del ala y la longitud del labio (a). Los valores óptimos se obtuvieron mediante algoritmos genéticos. Se investiga la variación del momento resistido con las variaciones en la dimensión del alma, el ala y el labio. Las longitudes de desarrollo consideradas en este trabajo van de 100 mm a 500 mm y los espesores adoptados desde 1 mm a 3 mm. El momento resistido y el comportamiento a pandeo de las secciones conformadas en frío (CFS) se verifican mediante el análisis por elementos finitos no lineales usando ABAQUS.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Parastesh, H., Hajirasouliha, I., Taji, H., & Bagheri Sabbagh, A. (2019). Shape optimization of cold-formed steel beam-columns with practical and manufacturing constraints. Journal of Constructional Steel Research, 155, 249-259. https://doi.org/10.1016/j.jcsr.2018.12.031

(2) Karim, A., & Adeli, H. (2000). Global Optimum Design of Cold-Formed Steel I-Shape Beams. Practice Periodical on Structural Design and Construction, 5(2), 78-81. https://doi.org/10.1061/(ASCE)1084-0680(2000)5:2(78)

(3) Magnucki, K., & Magnucka-Blandzi, E. (1999). Variational design of open cross-section thin-walled beam under stability constraints. Thin-Walled Structures, 35(3), 185-191. https://doi.org/10.1016/S0263-8231(99)00031-2

(4) Magnucki, K., & Paczos, P. (2009). Theoretical shape optimization of cold-formed thin-walled channel beams with drop flanges in pure bending. Journal of Constructional Steel Research, 65(8-9), 1731-1737. https://doi.org/10.1016/j.jcsr.2009.03.010

(5) Vinot, P., Cogan, S., & Piranda, J. (2001). Shape optimization of thin-walled beam-like structures.

(6) Anapayan, T., Mahendran, M., & Mahaarachchi, D. (2011). Lateral distortional buckling tests of a new hollow flange channel beam. Thin-Walled Structures, 49(1), 13-25. https://doi.org/10.1016/j.tws.2010.08.003

(7) Magnucka-Blandzi, E., & Magnucki, K. (2011). Buckling and optimal design of cold-formed thin-walled beams: Review of selected problems. Thin-Walled Structures, 49(5), 554-561. https://doi.org/10.1016/j.tws.2010.09.011

(8) K.S. Wanniarachchi, M. Mahendran, Experimental study of the section moment capacity of cold-formed and screw-fastened rectangular hollow flange beams, Thin-Walled Structures, Volume 119, 2017, Pages 499-509.

(9) Li, Z., Leng, J., Guest, J. K., & Schafer, B. W. (2016). Two-level optimization for a new family of cold-formed steel lipped channel sections against local and distortional buckling. Thin-Walled Structures, 108, 64-74. https://doi.org/10.1016/j.tws.2016.07.004

(10) Tran, T., & Li, L. yuan. (2006). Global optimization of cold-formed steel channel sections. Thin-Walled Structures, 44(4), 399-406. https://doi.org/10.1016/j.tws.2006.04.007

(11) Magnucki, K., Maćkiewicz, M., & Lewiński, J. (2006). Optimal design of a mono-symmetrical open cross section of a cold-formed beam with cosinusoidally corrugated flanges. Thin-Walled Structures, 44(5), 554-562. https://doi.org/10.1016/j.tws.2006.04.016

(12) Pala, M., & Caglar, N. (2007). A parametric study for distortional buckling stress on cold-formed steel using a neural network. Journal of Constructional Steel Research, 63(5), 686-691. https://doi.org/10.1016/j.jcsr.2006.07.005

(13) Wan, H. X., & Mahendran, M. (2015). Behaviour and strength of hollow flange channel sections under torsion and bending. Thin-Walled Structures, 94, 612-623. https://doi.org/10.1016/j.tws.2015.05.013

(14) Ayhan, D., & Schafer, B. W. (2015). Cold-formed steel member bending stiffness prediction. Journal of Constructional Steel Research, 115, 148-159. https://doi.org/10.1016/j.jcsr.2015.07.004

(15) Anbarasu, M., & Ashraf, M. (2017). Interaction of local-flexural buckling for cold-formed lean duplex stainless steel hollow columns. Thin-Walled Structures, 112, 20-30. https://doi.org/10.1016/j.tws.2016.12.006

(16) Kurniawan, C. W., & Mahendran, M. (2009). Elastic lateral buckling of simply supported LiteSteel beams subject to trans-verse loading. Thin-Walled Structures, 47(1), 109-119. https://doi.org/10.1016/j.tws.2008.05.012

(17) Perera, N., & Mahendran, M. (2019). Finite element analysis and design for section moment capacities of hollow flange steel plate girders. Thin-Walled Structures, 135, 356-375. https://doi.org/10.1016/j.tws.2018.10.014

(18) Chen, D. H., & Masuda, K. (2016). Rectangular hollow section in bending: Part I - Cross-sectional flattening deformation. Thin-Walled Structures, 106, 495-507. https://doi.org/10.1016/j.tws.2015.12.019

(19) Hassan, E. M., Serror, M. H., & Mourad, S. A. (2017). Numerical prediction of available rotation capacity of cold-formed steel beams. Journal of Constructional Steel Research, 128, 84-98. https://doi.org/10.1016/j.jcsr.2016.08.010

(20) Siahaan, R., Mahendran, M., & Keerthan, P. (2016). Section moment capacity tests of rivet fastened rectangular hollow flange channel beams. Journal of Constructional Steel Research, 125, 252-262. https://doi.org/10.1016/j.jcsr.2016.06.021

(21) Becque, J., & Rasmussen, K. J. R. (2009). Numerical Investigation of the Interaction of Local and Overall Buckling of Stainless Steel I-Columns. Journal of Structural Engineering, 135(11), 1349-1356. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000052

(22) Sadowski, A. J., & Rotter, M. J. (2013). On the relationship between mesh and stress field orientations in linear stability analyses of thin plates and shells. Finite Elements in Analysis and Design, 73, 42-54. https://doi.org/10.1016/j.finel.2013.05.004

(23) Schafer, B. W., Li, Z., & Moen, C. D. (2010). Computational modeling of cold-formed steel. Thin-Walled Structures, 48(10-11), 752-762. https://doi.org/10.1016/j.tws.2010.04.008

(24) Dubina, D., Ungureanu, V., & Landolfo, R. (2013). Design of Cold-formed Steel Structures: Eurocode 3: Design of Steel Structures. Part 1-3 Design of Cold-formed Steel Structures.

(25) Huang, Y., & Young, B. (2013). Experimental and numerical investigation of cold-formed lean duplex stainless steel flexural members. Thin-Walled Structures, 73, 216-228. https://doi.org/10.1016/j.tws.2013.07.019

(26) British Standards Institution. (2005). Eurocode 3: Design of steel structures. London: BSI.

(27) Camotim, D., Silvestre, N., Gonçalves, R., & Dinis, P. B. (2006). GBT-based Structural Analysis of Thin-walled members: Overview, Recent Progress and Future Developments. In M. Pandey, W.-C. Xie, & L. Xu (Eds.), Advances in Engineering Structures, Mechanics & Construction (Vol. 140, pp. 187-204). Springer Netherlands. https://doi.org/10.1007/1-4020-4891-2_16

(28) Dassault Systèmes. (2016). Abaqus 2016 Documentation. © Dassault Systemes.

(29) Lee, J., Kim, S. M., & Seon Park, H. (2006). Optimum design of cold-formed steel columns by using micro genetic algorithms. Thin-Walled Structures, 44(9), 952-960. https://doi.org/10.1016/j.tws.2006.08.021

Publicado

2021-09-14

Cómo citar

Kumar, P. ., & Dhamodhara Kannan, G. . (2021). Optimización de secciones CFS bajo flexión usando el Algoritmo Genético. Informes De La Construcción, 73(563), e399. https://doi.org/10.3989/ic.76866

Número

Sección

Artículos