Optimization of CFS sections under flexure using Genetic Algorithm

Authors

DOI:

https://doi.org/10.3989/ic.76866

Keywords:

Optimization, Rectangular hollow flange section, Genetic Algorithm, EuroCode 3

Abstract


Economization of the structural systems by optimizing the elements is the recent trend receiving much attention in structural engineering designs. In this work, a numerical study is made to arrive at the optimal proportions of the cold-formed steel (CFS) Lipped C, Lipped Z, and Rectangular Hollow Flange sections (RHFB) when used as flexural members. Web depth to developed length ratio (k) and the flange width to lip depth ratio (a) are the two parameters taken for this optimization. Genetic algorithm was used to obtain the optimum values. Investigations are carried out on the variation in the moment capacity to the changes in dimensions of web, flange and lip. In this work developed length ranging from 100 mm to 500 mm and thickness of 1 mm to 3 mm were adopted. The moment capacity and buckling behavior of (CFS) sections are verified by non-linear finite element analysis using ABAQUS.

Downloads

Download data is not yet available.

References

(1) Parastesh, H., Hajirasouliha, I., Taji, H., & Bagheri Sabbagh, A. (2019). Shape optimization of cold-formed steel beam-columns with practical and manufacturing constraints. Journal of Constructional Steel Research, 155, 249-259. https://doi.org/10.1016/j.jcsr.2018.12.031

(2) Karim, A., & Adeli, H. (2000). Global Optimum Design of Cold-Formed Steel I-Shape Beams. Practice Periodical on Structural Design and Construction, 5(2), 78-81. https://doi.org/10.1061/(ASCE)1084-0680(2000)5:2(78)

(3) Magnucki, K., & Magnucka-Blandzi, E. (1999). Variational design of open cross-section thin-walled beam under stability constraints. Thin-Walled Structures, 35(3), 185-191. https://doi.org/10.1016/S0263-8231(99)00031-2

(4) Magnucki, K., & Paczos, P. (2009). Theoretical shape optimization of cold-formed thin-walled channel beams with drop flanges in pure bending. Journal of Constructional Steel Research, 65(8-9), 1731-1737. https://doi.org/10.1016/j.jcsr.2009.03.010

(5) Vinot, P., Cogan, S., & Piranda, J. (2001). Shape optimization of thin-walled beam-like structures.

(6) Anapayan, T., Mahendran, M., & Mahaarachchi, D. (2011). Lateral distortional buckling tests of a new hollow flange channel beam. Thin-Walled Structures, 49(1), 13-25. https://doi.org/10.1016/j.tws.2010.08.003

(7) Magnucka-Blandzi, E., & Magnucki, K. (2011). Buckling and optimal design of cold-formed thin-walled beams: Review of selected problems. Thin-Walled Structures, 49(5), 554-561. https://doi.org/10.1016/j.tws.2010.09.011

(8) K.S. Wanniarachchi, M. Mahendran, Experimental study of the section moment capacity of cold-formed and screw-fastened rectangular hollow flange beams, Thin-Walled Structures, Volume 119, 2017, Pages 499-509.

(9) Li, Z., Leng, J., Guest, J. K., & Schafer, B. W. (2016). Two-level optimization for a new family of cold-formed steel lipped channel sections against local and distortional buckling. Thin-Walled Structures, 108, 64-74. https://doi.org/10.1016/j.tws.2016.07.004

(10) Tran, T., & Li, L. yuan. (2006). Global optimization of cold-formed steel channel sections. Thin-Walled Structures, 44(4), 399-406. https://doi.org/10.1016/j.tws.2006.04.007

(11) Magnucki, K., Maćkiewicz, M., & Lewiński, J. (2006). Optimal design of a mono-symmetrical open cross section of a cold-formed beam with cosinusoidally corrugated flanges. Thin-Walled Structures, 44(5), 554-562. https://doi.org/10.1016/j.tws.2006.04.016

(12) Pala, M., & Caglar, N. (2007). A parametric study for distortional buckling stress on cold-formed steel using a neural network. Journal of Constructional Steel Research, 63(5), 686-691. https://doi.org/10.1016/j.jcsr.2006.07.005

(13) Wan, H. X., & Mahendran, M. (2015). Behaviour and strength of hollow flange channel sections under torsion and bending. Thin-Walled Structures, 94, 612-623. https://doi.org/10.1016/j.tws.2015.05.013

(14) Ayhan, D., & Schafer, B. W. (2015). Cold-formed steel member bending stiffness prediction. Journal of Constructional Steel Research, 115, 148-159. https://doi.org/10.1016/j.jcsr.2015.07.004

(15) Anbarasu, M., & Ashraf, M. (2017). Interaction of local-flexural buckling for cold-formed lean duplex stainless steel hollow columns. Thin-Walled Structures, 112, 20-30. https://doi.org/10.1016/j.tws.2016.12.006

(16) Kurniawan, C. W., & Mahendran, M. (2009). Elastic lateral buckling of simply supported LiteSteel beams subject to trans-verse loading. Thin-Walled Structures, 47(1), 109-119. https://doi.org/10.1016/j.tws.2008.05.012

(17) Perera, N., & Mahendran, M. (2019). Finite element analysis and design for section moment capacities of hollow flange steel plate girders. Thin-Walled Structures, 135, 356-375. https://doi.org/10.1016/j.tws.2018.10.014

(18) Chen, D. H., & Masuda, K. (2016). Rectangular hollow section in bending: Part I - Cross-sectional flattening deformation. Thin-Walled Structures, 106, 495-507. https://doi.org/10.1016/j.tws.2015.12.019

(19) Hassan, E. M., Serror, M. H., & Mourad, S. A. (2017). Numerical prediction of available rotation capacity of cold-formed steel beams. Journal of Constructional Steel Research, 128, 84-98. https://doi.org/10.1016/j.jcsr.2016.08.010

(20) Siahaan, R., Mahendran, M., & Keerthan, P. (2016). Section moment capacity tests of rivet fastened rectangular hollow flange channel beams. Journal of Constructional Steel Research, 125, 252-262. https://doi.org/10.1016/j.jcsr.2016.06.021

(21) Becque, J., & Rasmussen, K. J. R. (2009). Numerical Investigation of the Interaction of Local and Overall Buckling of Stainless Steel I-Columns. Journal of Structural Engineering, 135(11), 1349-1356. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000052

(22) Sadowski, A. J., & Rotter, M. J. (2013). On the relationship between mesh and stress field orientations in linear stability analyses of thin plates and shells. Finite Elements in Analysis and Design, 73, 42-54. https://doi.org/10.1016/j.finel.2013.05.004

(23) Schafer, B. W., Li, Z., & Moen, C. D. (2010). Computational modeling of cold-formed steel. Thin-Walled Structures, 48(10-11), 752-762. https://doi.org/10.1016/j.tws.2010.04.008

(24) Dubina, D., Ungureanu, V., & Landolfo, R. (2013). Design of Cold-formed Steel Structures: Eurocode 3: Design of Steel Structures. Part 1-3 Design of Cold-formed Steel Structures.

(25) Huang, Y., & Young, B. (2013). Experimental and numerical investigation of cold-formed lean duplex stainless steel flexural members. Thin-Walled Structures, 73, 216-228. https://doi.org/10.1016/j.tws.2013.07.019

(26) British Standards Institution. (2005). Eurocode 3: Design of steel structures. London: BSI.

(27) Camotim, D., Silvestre, N., Gonçalves, R., & Dinis, P. B. (2006). GBT-based Structural Analysis of Thin-walled members: Overview, Recent Progress and Future Developments. In M. Pandey, W.-C. Xie, & L. Xu (Eds.), Advances in Engineering Structures, Mechanics & Construction (Vol. 140, pp. 187-204). Springer Netherlands. https://doi.org/10.1007/1-4020-4891-2_16

(28) Dassault Systèmes. (2016). Abaqus 2016 Documentation. © Dassault Systemes.

(29) Lee, J., Kim, S. M., & Seon Park, H. (2006). Optimum design of cold-formed steel columns by using micro genetic algorithms. Thin-Walled Structures, 44(9), 952-960. https://doi.org/10.1016/j.tws.2006.08.021

Published

2021-09-14

How to Cite

Kumar, P. ., & Dhamodhara Kannan, G. . (2021). Optimization of CFS sections under flexure using Genetic Algorithm. Informes De La Construcción, 73(563), e399. https://doi.org/10.3989/ic.76866

Issue

Section

Research Articles