Impact of joint stiffness on the overall cost of gabled steel frames

Authors

DOI:

https://doi.org/10.3989/ic.88844

Keywords:

Joints, gabled steel frames, cost, optimization, stiffness

Abstract


This paper studies the influence of joint stiffness value combinations in gabled steel frames. Twelve different joint stiffness values were combined for the column base, knee joint and ridge joint. Ten different geometries were combined for gabled steel frames (8-20 m span, 3.5-10 m column height and 10-20% roof slope). Finally, three different load levels for snow and wind were considered, with constant values of permanent and maintenance loads. A total of 46656 cases were analyzed using specific software for steel structure design, obtaining in each case the total cost. Graphical cost representation was obtained for each joint stiffness value combination. Joints represent an average of 17% of the total cost of gabled steel frame structures. In general, lower cost structures were obtained with low joint rigidity values. It is possible to reduce the total cost by around 18% on average, with appropriate selection of joint stiffness combinations.

Downloads

Download data is not yet available.

References

(1) CEN. (2005). Eurocode 3: Design of steel structures - part 1.8: design of joints (EN 1993-1-8:2005(E)), Brussels.

(2) (AISC. (1994). Manual of Steel Construction. Load &Resistance Factor Design. (Second Edition)

(3) Bel Hadj Ali, N., Sellami, M., Cutting-Decelle, A.F. and Mangin, J.C. (2009). Multi-stage production cost optimization of semi-rigid steel frames using genetic algorithms. Engineering Structures (31), pp. 2766-2778. https://doi.org/10.1016/j.engstruct.2009.07.004

(4) Jaspart, J.P. (2002). Design of structural joints in building frames. Prog.Struct.Eng. Mater.4(1), pp.18-34. https://doi.org/10.1002/pse.105

(5) Steenhuis, M., Weynand, K. and Gresnigt, A.M. (1998). Strategies for economic design of unbraced steel frames. Journal of Constructional Steel Research. 46(1-3), pp. 88-89. https://doi.org/10.1016/S0143-974X(98)00026-1

(6) Bijlaard, F. (2006). Eurocode 3, a basis for further development in joint designJournal of constructional Steel Research62(11), pp. 11-20. https://doi.org/10.1016/j.jcsr.2006.06.012

(7) Kanvinde, A.M., Grilli, D.A. and Zareian, F. (2012). Rotational stiffness of exposed column base connections: experiments and analytical models. Journal of Structural Engineering. 138(5), pp. 549-560. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000495

(8) Kavoura, F., Gencturk, B., Dawood, M. and Gurbuz, M. (2015). Influence of base-plate connection stiffness on the design of low-rise metal buildings. Journal of Constructional Steel Research. 115(12), pp. 169-178. https://doi.org/10.1016/j.jcsr.2015.08.005

(9) Sanchez, G. and Martí, P. (2004). Diseño óptimo de estructuras de acero con uniones semirrígidas no lineales. III Congreso internacional sobre Métodos Numéricos en Ingeniería y Ciencias Aplicadas. ITESM, Monterrey, CIMNE, Barcelona 2004.

(10) Chen, W.F. and Toma, S. (1994). Advanced Analysis of Steel Frames. Boca Raton, Fla: CRC Press.

(11) Galambos, T.V. (1960). Influence of partial base fixidity on frame stability. Journal of the Structural Division. 86(5), pp. 85-117. https://doi.org/10.1061/JSDEAG.0000523

(12) Bajwa, M.S., Charney, F.A., Moen, C.D. and Easterling, W.S. (2010). Assessment of analytical procedures for designing metal buildings for wind drift serviceability. CE/VPI-ST 10/05, Virginia Polytechnic Institute and State University.

(13) Watson, K.B., Dallas, S., Van der Kreek, N. and Main, T. (1996). Costing of Steelwork from Feasibility through to Completion. Steel Construct. J. AISC. 30(2), pp. 2-9.

(14) Jarnai, K. and Farkas, J. (1999). Cost calculation and optimisation of welded steel structures. Journal of Constructional Steel Research. 50, pp. 115-135. https://doi.org/10.1016/S0143-974X(98)00241-7

(15) Xu, L., Sherbourne, A.N. and Grierson, D.E. (1995). Optimal cost design of semi-rigid, low rise industrial frames. Eng. J, AISC. 32(3), pp. 87-97.

(16) Simoes, L.M.C. (1996). Optimization of frames with semi-rigid connections. Computer & Structures. 60(4), pp. 531-539. https://doi.org/10.1016/0045-7949(95)00427-0

(17) Kameshki, E.S. and Saka, M.P. (2003). Genetic algorithm based optimum design of nonlinear planar steel frames with various semi-rigid connections. Journal of Constructional Steel Research. 59(1), pp. 109-134. https://doi.org/10.1016/S0143-974X(02)00021-4

(18) Saka, M.P. (2009). Optimum design of steel sway frames to BS 5950 using harmony search algorithm. Journal of Constructional Steel Research. 65, pp. 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005

(19) Fernández Diezma, J. (2016). Idoneidad del grado de rigidez de las uniones en pórticos metálicos de naves a dos aguas en edificación agroindustrial (Joint rigidity suitabality in steel gabled portal frames for agro-industrial buildings).Tesis (Doctoral), E.T.S.I. Agrónomos (UPM). http://oa.upm.es/39239/.

(20) CEN. (2006 a). Hot rolled products of structural steels - Part 2: Technical delivery conditions for non-alloy structural steels (EN 10025-2:2006), Brussels.

(21) CEN. (2006 b). Steel for the reinforcement of concrete - Weldable reinforcing steel - General (EN 10080:2006), Brussels.

(22) Ministerio de Fomento. (2008). Instrucción de Hormigón Estructural. Comisión Permanente del Hormigón (EHE 08, Madrid, Spain).

(23) CEN. (2013). Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings (EN 1992-1-1:2013), Brussels.

(24) Ministerio de Fomento. (2011). Instrucción de Acero Estructural (EAE).

(25) Ministerio de Vivienda. (2006). Código Técnico de la Edificación (CTE).

(26) Xu, L and Grierson, D.E. (1993). Computer-Automated Design of Semirrigid Steel Frameworks. Journal of Structural Engineering. 119, pp. 1740-1760. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1740)

(27) Metalpla XE5. (2016). www.metalpla.com

(28) Argüelles Álvarez, R., Argüelles Bustillo, R., Arriaga Martitegui, F., Argüelles Bustillo, J.M. and Esteban Herrero, M. (2005). Cálculo matricial de estructuras en 1er y 2º orden. Teoría y problemas Bellisco.

(29) Argüelles Álvarez, R., Argüelles Bustillo, R., Arriaga Martitegui, F., Esteban Herrero, M. and Íñiguez González, G. (2016). Estructuras de acero 4. Inestabilidad: Fundamentos, Calculo y Programa. Bellisco.

(30) Eröz, M., White, D.W. and DesRoches, R. (2008). Direct analysis and design of steel frames accounting for partially restrained column base conditions. Journal of Structural Engineering 134(9), pp. 1508-1517. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1508)

Published

2022-09-15

How to Cite

Fernández Diezma, J., Argüelles-Bustillo, R. A. ., & Arriaga, F. (2022). Impact of joint stiffness on the overall cost of gabled steel frames. Informes De La Construcción, 74(567), e452. https://doi.org/10.3989/ic.88844

Issue

Section

Research Articles