Indoor air quality in naturally ventilated dwellings in Spain
DOI:
https://doi.org/10.3989/ic.6447Keywords:
Natural ventilation, IAQ, indoor air quality, CO2, occupant behavior, dwellings, IEQ, indoor temperature, CTE, Building Code, regulations, ventilation systemAbstract
This article presents the results of the exploratory study on indoor air quality in existing dwellings with traditional ventilation systems based on natural ventilation. A preliminary study of the most representative typology of the Spanish housing stock has been conducted and, based on it, twelve dwellings located in Madrid have been monitored in different periods. Monitored indoor air quality has been compared to that required in the regulations in Spain, the Código Técnico de la Edificación (Technical Building Code). According to the results of the research, 50 % of the monitored dwellings do not comply with the CO2-based air quality quantification offset in the regulations. Such non-compliance is primarily caused by high CO2 concentrations in winter, especially in bedrooms. These high concentrations and their seasonality are attributed to the interference of the occupant’s behaviour, influenced by weather conditions, that is affecting the efficiency of the existing natural ventilation systems.
Downloads
References
(1) B. Chenari, J. Dias Carrilho, and M. Gameiro da Silva (2016). Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review, Renewable and Sustainable Energy Reviews, 59, 1426-1447, https://doi.org/10.1016/j.rser.2016.01.074
(2) S. Emmerich, W. Dols, and J. Axley (2001). Natural Ventilation Review and Plan for Design and Analysis Tools, National Inst. Stand. Technol. https://www.researchgate.net/publication/239538858_Natural_Ventilation_Review_and_Plan_for_Design_and_Analysis_Tools https://doi.org/10.6028/NIST.IR.6781 PMCid:PMC2193442
(3) D. Etheridge (2015). A perspective on fifty years of natural ventilation research, Building and Environment, 91, 51-60, https://doi.org/10.1016/j.buildenv.2015.02.033
(4) Y. Li and A. Delsante (2001). Natural ventilation induced by combined wind and thermal forces, Building and Environment, 36(1), 59-71. https://doi.org/10.1016/S0360-1323(99)00070-0
(5) M. Domínguez-Pérez, J. Leal-Maldonado, and M. Barañano-Cid (2021). Vivienda, transformaciones urbanas y desigualdad socioespacial en las grandes ciudades españolas, Ciudad y Territorio Estudios Territoriales, 53(Monográfico 2021), 5-12.
(6) Ministerio de Vivienda (2022). Documento Básico HS Salubridad. Sección HS 3: Calidad del aire interior, in Código Técnico de la Edificación, 2017th ed. Gobierno de España, 2006. Accessed: Mar. 01, 2023. [Online]. Retrieved from https://www.codigotecnico.org/pdf/Documentos/HS/DBHS.pdf.
(7) C. Dimitroulopoulou (2012). Ventilation in European dwellings: A review, Building and Environment, 47, 109-125, https://doi.org/10.1016/j.buildenv.2011.07.016
(8) G. McGill, L. O. Oyedele, and K. McAllister (2015). Case study investigation of indoor air quality in mechanically ventilated and naturally ventilated UK social housing, International Journal of Sustainable Built Environment, 4(1), 58-77, https://doi.org/10.1016/j.ijsbe.2015.03.002
(9) F. de Frutos et al. (2021). Indoor Environmental Quality and Consumption Patterns before and during the COVID-19 Lockdown in Twelve Social Dwellings in Madrid, Spain, Sustainability, 13(14), 7700, https://doi.org/10.3390/su13147700
(10) M. Á. Navas-Martín and T. Cuerdo-Vilches (2023). Natural ventilation as a healthy habit during the first wave of the COVID-19 pandemic: An analysis of the frequency of window opening in Spanish homes, Journal of Building Engineering, 65, 105649. https://doi.org/10.1016/j.jobe.2022.105649 PMCid:PMC9747684
(11) A. Persily (2015). Challenges in developing ventilation and indoor air quality standards: The story of ASHRAE Standard 62, Building and Environment, 91, 61-69. https://doi.org/10.1016/j.buildenv.2015.02.026 PMid:31274954 PMCid:PMC6605073
(12) G. Guyot, I. Walker, M. Sherman, P. Linares, S. Garcia-Ortega, and S. Caillou (2019). VIP 39: A review of performance-based approaches to residential smart ventilation. Accessed: Feb. 27, 2023. [Online]. Retrieved from https://www.aivc.org/resource/vip-39-review-performance-based-approaches-residential-smart-ventilation.
(13) G. Guyot, I. S. Walker, and M. H. Sherman (2019). Performance based approaches in standards and regulations for smart ventilation in residential buildings: a summary review, International Journal of Ventilation, 8(2), 96-112. https://doi.org/10.1080/14733315.2018.1435025
(14) M. Sandberg (1981). What is ventilation efficiency?, Building and Environment, 16(2), 123-135, https://doi.org/10.1016/0360-1323(81)90028-7
(15) A. Persily and L. de Jonge (2017). Carbon dioxide generation rates for building occupants, Indoor Air, 27(5), 868-879. https://doi.org/10.1111/ina.12383 PMid:28321932 PMCid:PMC5666301
(16) W. F. de Gids and P. Wouters (2010). VIP 33: CO2 as indicator for the indoor air quality - General principles, Accessed: Feb. 27, 2023. [Online]. Retrieved from https://www.aivc.org/resource/vip-33-co2-indicator-indoor-air-quality-general-principles.
(17) A. Persily (2022). Carbon Dioxide in Ventilation and IAQ Evaluation, in AIVC Technical Note 70 40 years to build tight and ventilate right: From infiltration to smart ventilation, in AIVC Technical Note, no. 70. INIVE EEIG, pp. 55-58. [Online]. Retrieved from https://www.aivc.org/resource/tn-70-40-years-build-tight-and-ventilate-right-infiltrationsmart-ventilation.
(18) X. Zhang, A. Mishra, and P. Wargocki (2022). Effects from Exposures to Human Bioeffluents and Carbon Dioxide, in Handbook of Indoor Air Quality, Y. Zhang, P. K. Hopke, and C. Mandin, Eds., Singapore: Springer, pp. 1-12. https://doi.org/10.1007/978-981-10-5155-5_63-1
(19) B. Li and W. Cai (2022). A novel CO2-based demand-controlled ventilation strategy to limit the spread of COVID-19 in the indoor environment, Building and Environment, 219, 109232. https://doi.org/10.1016/j.buildenv.2022.109232 PMid:35637641 PMCid:PMC9132786
(20) X. Lyu, Z. Luo, L. Shao, H. Awbi, and S. Lo Piano (2023). Safe CO2 threshold limits for indoor long-range airborne transmission control of COVID-19, Building and Environment, 234, 109967. https://doi.org/10.1016/j.buildenv.2022.109967 PMid:36597420 PMCid:PMC9801696
(21) S. Garcia-Ortega and P. Linares-Alemparte (2017). Pollutant exposure of the occupants of dwellings that complies with the Spanish indoor air quality regulations, Accessed: Feb. 27, 2023. [Online]. Retrieved from https://www.aivc.org/resource/pollutant-exposure-occupants-dwellings-complies-spanish-indoor-air-quality-regulations.
(22) INE (2013). Censos de Población y Viviendas 2011. Accessed: Dec. 12, 2016. [Online]. Retrieved from http://www.ine.es/censos2011_datos/cen11_datos_inicio.htm.
(23) H. E. Beck, N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci Data, 5, 180214. https://doi.org/10.1038/sdata.2018.214 PMid:30375988 PMCid:PMC6207062
(24) AICIA (2009). Condiciones de aceptación de procedimientos alternativos a LIDER y CALENER | IDAE. IDAE, Ministerio de Vivienda, Goberment of Spain. Accessed: Mar. 08, 2023. [Online]. Retrieved from https://www.idae.es/publicaciones/condiciones-de-aceptacion-de-procedimientos-alternativos-lider-y-calener
(25) Agencia Estatal de Meteorología, Agencia Estatal de Meteorología - AEMET. Gobierno de España. https://www.aemet.es/es/portada (accessed Aug. 14, 2023).
(26) J. Feijó-Muñoz, A. Meiss, I. Poza-Casado, and M.-Á. Padilla-Marcos (2018). Permeabilidad al aire de los edificios residenciales en España. Estudio y caracterización de sus infiltraciones. Accessed: Jul. 29, 2023. [Online]. Retrieved from https://www.researchgate.net/publication/331346742_Permeabilidad_al_aire_de_los_edificios_residenciales_en_Espana_Estudio_y_caracterizacion_de_sus_infiltraciones.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.