Patented Industrialized extruded aluminum panel for the execution of ventilated structural envelopes with solar collection in low-rise constructions

Authors

DOI:

https://doi.org/10.3989/ic.6667

Keywords:

Light modular construction, innovative construction systems, aluminium construction, cassette section, industrialized construction

Abstract


This article describes the design and analysis process of a cassette-type system registered under the name "walluminium." This system consists of an extruded aluminum panel for facades and roofs, offering a good balance between industrialization and adaptability. The panel serves three functions: it is structural as it forms load-bearing walls, functions as a ventilated roof and facade, and acts as a solar collector. This study analyzed the system's precursors, an initial design tested in a construction prototype, and an optimized design patented in 2020. As a result, the viability of the panel's triple function was demonstrated, providing an interesting alternative for modular housing construction. The construction system has been certified as a Passivhaus component and is being used as an industrialized construction system that eliminates uncertainties in passive house construction.

Downloads

Download data is not yet available.

References

(1) Lacey, A. W., Chen, W., Hao, H., & Bi, K. (2018). Structural response of modular buildings-an overview. Journal of building engineering, 16, 45-56.

(2) Roque, E., Oliveira, R., Almeida, R. M., Vicente, R., & Figueiredo, A. (2020). Lightweight and prefabricated construction as a path to energy efficient buildings: Thermal design and execution challenges. International Journal of Environment and Sustainable Development, 19(1), 1-32.

(3) Sánchez-Garrido, A. J., Navarro, I. J., García, J., & Yepes, V. (2023). A systematic literature review on modern methods of construction in building: An integrated approach using machine learning. Journal of Building Engineering, 73, 106725

(4) Kasperzyk, C., Kim, M. K., & Brilakis, I. (2017). Automated re-prefabrication system for buildings using robotics. Automation in Construction, 83, 184-195.

(5) Ferdous, W., Bai, Y., Ngo, T. D., Manalo, A., & Mendis, P. (2019). New advancements, challenges and opportunities of multi-storey modular buildings-A state-of-the-art review. Engineering structures, 183, 883-893.

(6) Lawson, R. M., Ogden, R. G., Pedreschi, R., & Popo-Ola, S. O. (2008). Developments of cold-formed steel sections in composite applications for residential buildings. Advances in structural engineering, 11(6), 651-660.

(7) Soares, N., Santos, P., Gervásio, H., Costa, J. J., & Da Silva, L. S. (2017). Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review. Renewable and Sustainable Energy Reviews, 78, 194-209.

(8) Kaitila, O. (2007). Web crippling of thin-walled cold formed steel cassettes. Journal of Constructional Steel Research, 63(6), 766-778.

(9) Rodríguez Cheda, J. B., Pérez-Valcárcel, J., & Hermo, V. (2011). Método para construir edificaciones de varias plantas mediante paneles portantes ligeros desde el nivel del terreno. Spanish Patent, 2370438.

(10) Davies, J. M. (2006). Light gauge steel cassette wall construction—theory and practice. Journal of Constructional Steel Research, 62(11), 1077-1086.

(11) Lendvai, A., & Joó, A. L. (2020). Improvement of stressed skin design procedure based on experimental and numerical simulations. Journal of Constructional Steel Research, 168, 105874.

(12) Belal, M. F., Serror, M. H., Mourad, S. A., & Saadawy, M. M. E. (2020). Numerical study of seismic behavior of light-gauge cold-formed steel stud walls. Journal of Constructional Steel Research, 174, 106307.

(13) Juan Pérez-Valcárcel, V. Hermo, J. Rodríguez-Cheda. (2013) A New Building System: Structural Aspects of CotaCeroSystem, Structures and Architecture: New Concepts, Applications and Challenges. (n.d.).

(14) Hermo, V. (2011). Sistema constructivo industrializado in situ COTaCERO: transferencia tecnológica: construcción de depósitos-ejecución de viviendas en altura mediante paneles portantes de acero. (Tesis doctoral): University of A Coruña.

(15) Pérez-Valcárcel, J., Muñoz-Vidal, M., & Hermo, V. (2020). Construcción izada: Condicionantes estructurales del sistema REVERSTOP. Informes de la Construcción, 72(559), e355-e355.

(16) Liu, W., & Chow, T. T. (2020). Experimental and numerical analysis of solar-absorbing metallic façade panel with embedded heat-pipe-array. Applied Energy, 265, 114736.

(17) Elguezabal, P., Lopez, A., Blanco, J. M., & Chica, J. A. (2020). CFD model-based analysis and experimental assessment of key design parameters for an integrated unglazed metallic thermal collector façade. Renewable Energy, 146, 1766-1780.

(18) Probst, M. M., & Roecker, C. (2007). Towards an improved architectural quality of building integrated solar thermal systems (BIST). Solar energy, 81(9), 1104-1116.

(19) Lamnatou, C., Mondol, J. D., Chemisana, D., & Maurer, C. (2015). Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system. Renewable and Sustainable Energy Reviews, 45, 36-51.

(20) Sistema optimizado de producción de viviendas ecoeficientes Proyectopía e-Home, Neotec Exp 00084417 Sneo 20151475 (Centro para el Desarrollo Tecnológico Industrial 08 de Julio de 2015).

(21) V. Hermo, Estructura modular para la construcción de edificaciones, Spanish patent., ES 2 716 889 B2 OE PM 2015, n.d.

(22) Siwowski, T. W. (2009). Structural behaviour of aluminium bridge deck panels. Engineering structures, 31(7), 1349-1353.

(23) Linhares, P., Hermo, V., & Meire, C. (2021). Environmental design guidelines for residential NZEBs with liner tray construction. Journal of Building Engineering, 42, 102580.

(24) Lawson, R. M., Ogden, R. G., Pedreschi, R., & Popo Ola, S. O. (2005). Pre-fabricated Systems in housing using light steel and modular Construction. Steel Structures, 5, 477-48.

(25) Mendis, P., Ngo, T., Haritos, N., Hira, A., Samali, B., & Cheung, J. (2007). Wind loading on tall buildings. Electronic Journal of Structural Engineering. http://hdl.handle.net/10453/5822

(26) Holmes, J. D., Kwok, K. C., & Ginger, J. D. (2012). Wind Loading Handbook for Australia and New Zealand: background to AS/NZS1170. 2 wind actions. Australasian Wind Engineering Society.

(27) Annan, C. D., Youssef, M. A., & El Naggar, M. H. (2008). Seismic overstrength in braced frames of modular steel buildings. Journal of Earthquake Engineering, 13(1), 1-21.

(28) Lawson, R., Ogden, R., Pedreschi, R., Grubb, P. J., & Ola, S. P. (2005). Developments in pre-fabricated systems in light steel and modular construction. Transport, 35(15), 15.

(29) Ramaji, I. J., & Memari, A. M. (2013, February). Identification of structural issues in design and construction of multi-story modular buildings. In Proceedings of the 1st residential building design and construction conference (pp. 294-303).

(30) Lawson, R. M., Ogden, R. G., & Bergin, R. (2012). Application of modular construction in high-rise buildings. Journal of architectural engineering, 18(2), 148-154.

(31) Arce-Recatalá, M., García-Morales, S., & Van den Bossche, N. (2020). Quantifying wind-driven rain intrusion: a comparative study on the water management features of different types of rear-ventilated façade systems. In 12th Nordic Symposium on Building Physics (NSB) (Vol. 172). EDP Sciences.

(32) FVHF, FVHF (2015), Retrieved from:, (2015). http://www.fvhf.de/facade/VHFSystem/Merkmale.php

(33) W. Liu, T.-T. Chow, Experimental and numerical analysis of solar-absorbing metallic facade panel with embedded heat-pipe-array, Applied Energy. 265 (2020) 114736.

(34) Anderson, T. N., Duke, M., & Carson, J. K. (2010). The effect of colour on the thermal performance of building integrated solar collectors. Solar energy materials and solar cells, 94(2), 350-354.

(35) Meire, C., Liñares, P., & Hermo, V. . (2024). El Sistema constructivo modular Walluminium, análisis de la envolvente hermética y termoacústica y su sistema de producción. Informes De La Construcción, 76(573), 6451.

(36) Meire Montaña, C., Linhares, P., & Hermo Sánchez, V. (2023). Método para la dirección de obra de viviendas modulares pasivas. Informes De La Construcción, 75(572), e520.

Published

2025-03-25

How to Cite

Meire, C., Linhares, P., & Hermo, V. (2025). Patented Industrialized extruded aluminum panel for the execution of ventilated structural envelopes with solar collection in low-rise constructions. Informes De La Construcción, 77(577), 6667. https://doi.org/10.3989/ic.6667

Issue

Section

Research Articles

Funding data

Centro para el Desarrollo Tecnológico Industrial
Grant numbers Exp 00 0844 17, Sneo 20 15 14 75