Evaluación de la carga de fallo por tracción diagonal en vigas de hormigón armado sin cercos a través del estudio del efecto de tamaño

Autores/as

  • J. R. Carmona Universidad de Castilla-La Mancha
  • G. Ruiz Universidad de Castilla-La Mancha

DOI:

https://doi.org/10.3989/ic.14.092

Palabras clave:

Hormigón armado, fallo por tracción diagonal, efecto de tamaño, cortante en vigas sin cercos

Resumen


El presente trabajo propone una expresión para evaluar la carga de fallo por traccion diagonal en vigas de hormigón armado sin cercos. El estudio se fundamenta en resultados experimentales y en conceptos básicos de Mecánica de Fractura con el fin de analizar el efecto de tamaño. Se comprueba que la armadura longitudinal modifica el efecto de tamaño respecto al de elementos entallados sin armadura. Para cuantificar este efecto establecemos un modelo teórico que se contrasta con ensayos de vigas de hormigón armado. A partir del modelo propuesto se presenta una formulación para determinar la carga de fallo por tracción diagonal en vigas de hormigón sin cercos. Para facilitar la aplicación de la formulación se realizan una serie de simplificaciones y finalmente se obtiene una expresión en función de los parámetros convencionalmente utilizados en el diseño de estructuras de hormigón.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Zsutty, T.C. (1968). Beam shear strength prediction by analysis of existing data. ACI Structural Journal, 65(11): 943-951.

(2) Rebeiz, K.S. (1999). Shear strength prediction for concrete members. Journal of Structural Engineering, 125(3): 301- 308. http://dx.doi.org/10.1061/(ASCE)0733-9445(1999)125:3(301)

(3) Okamura, H., Higai, T. (1980). Proposed design equation for shear strength of R.C. beams without web reinforcement. En Proceedings, Japan Society of Civil Engineering, 300:131-141.

(4) CEB (Comite Euro-International du Beton). (1991). CEB-FIP Model Code 1990, Final Draft. Lausanne.

(5) Ministerio de Fomento. (2008). EHE 08 Instrucción Espa-ola de Hormigón Estructural.

(6) Freire, M. J. (2004). Análisis de las formulaciones sobre la resistencia a cortante del hormigón. Informes de la Construccion, 497(57): 13-28.

(7) Vecchio, F. J., Collins, M. P. (1986). The modified compression field theory for reinforced concrete elements subjected to shear. ACI Journal, 83(2): 219-231.

(8) Vecchio, F. J., Collins, M. P. (1988). Predicting the response of reinforced concrete beams subjected to shear using the modified compression field theory. ACI Structural Journal, 85(3): 258-268.

(9) Bentz, E. C., Vecchio, F. J., Collins, M. P. (2006). Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Structural Journal, 103(4): 614-624.

(10) Collins, M. P., Bentz, E. C., Sherwood, E. G. (2007). An adequate theory for the shear strength of reinforced concrete structures. En Morley Symposium on Concrete Plasticity and its Application (pp. 75-94). University of Cambridge.

(11) CSA Committee. (2004). A23.3-04 Design of Concrete Structures. Mississauga, ON, Canada: Canadian Standards Association.

(12) Muttoni, A., Ruiz, M. F. (2008). Shear strength of members without transverse reinforcement as function of critical shear crack width. ACI Structural Journal, 105(2): 163-172.

(13) AASHTO. (2008). AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials.

(14) Fédération Internationale du Béton (FIB). (2012). Model Code 2010 - Final draft, Bulletins 65-66, Vols. 1-2. Lausanne, Switzerland: Fédération Internationale du Béton.

(15) Zararis, P. D., Papadakis, G. Ch. (2001). Diagonal shear failure and size effect in RC beams without web reinforcement. Journal of Structural Engineering, ASCE, 127(7): 733-742. http://dx.doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)

(16) Tureyen, A. K., Frosch, R. J. (2003). Concrete Shear Strength: Another Perspective. ACI Structural Journal, 100(5): 609-615.

(17) Park, H-G, Choi, K-K, Wight, J. K. (2006). Strain-based shear strength model for slender beams without web reinforcement. ACI Structural Journal, 103(6): 783-793.

(18) Park, H-G., Kang, S., Choi, K. K. (2013). Analytical model for shear strength of ordinary and prestressed concrete beams. Engineering Structures, 46: 94-103. http://dx.doi.org/10.1016/j.engstruct.2012.07.015

(19) Choi, K-K, Park, H-G, and Wight, J. K. (2007). Unified shear strength model for reinforced concrete beams-Part I: Development. ACI Structural Journal, 104(2): 142-152.

(20) Choi, K-K, Park, H-G (2008). Unified shear strength model for reinforced concrete beams-Part II: Verification and simplified method. ACI Structural Journal, 104(2): 153-161.

(21) Mari, A., Bairán, J. M., Cladera, A., Oller, E., Ribas, C. (2014). Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, 11(11): 1399-1419. http://dx.doi.org/10.1080/15732479.2014.964735

(22) Bairán, J.M., Mari, A., Mohr, S. (2010). Estudio del comportamiento del hormigón armado ante esfuerzos normales y tangentes mediante modelos seccionales de interacción completa. Informes de la Construcción, 62(518): 67-77. http://dx.doi.org/10.3989/ic.09.021

(23) Perez-Caldentey, A., Padilla, P., Muttoni, A., Fernandez-Ruiz, M. (2011). Effect of load distribution and variable depth on shear resistance of slender beams without stirrups. ACI Structural Journal, 109(5):595-603.

(24) Reinhardt, H.W. (1981). Similitude of brittle fracture of structural concrete. En Advanced Mechanics of Reinforced Concrete, Delf, IASBE Colloquium (pp. 117-130).

(25) Ruiz, G., Elices, M., Planas, J. (1998). Experimental study of fracture of lightly reinforced concrete beams. Materials and Structures, 31(10): 683-691. http://dx.doi.org/10.1007/BF02480445

(26) Ruiz, G., Carmona, J.R. (2006). Experimental study on the influence of the shape of the cross-section and of the rebar arrangement on the fracture of lightly reinforced beams. Materials and Structures, 39(3): 343-352. http://dx.doi.org/10.1007/s11527-005-9006-7

(27) Carmona. J.R. (2006). Study of Cracking Processes in Reinforced Concrete Elements (Tesis doctoral). Universidad de Castilla-La Mancha. https://ruidera.uclm.es/xmlui/handle/10578/2268.

(28) Carpinteri, A., Carmona, J.R., Ventura, G. (2007) Propagation of flexural and shear cracks through reinforced concrete beams by the bridged crack model. Magazine of Concrete Research, 59(10): 743-756. http://dx.doi.org/10.1680/macr.2007.59.10.743

(29) Kani, G. N. J. (1967). How safe are our large reinforced concrete beams? ACI Journal Proceedings, 64: 123-141.

(30) Bažant, Z. P., Sun, H. H. (1987). Size effect in diagonal shear failure: Influence of aggregate size and stirrups. ACI Materials Journal, 84(4): 259-272.

(31) Bažant, Z.P., Yu, Q. (2005) Designing against size effect on shear strength of reinforced concrete beams without stirrups: I. Formulation. Journal of Structural Engineering-ASCE, 131(12): 1877-1885. http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1877)

(32) Bažant, Z.P., Yu, Q. (2005). Designing against size effect on shear strength of reinforced concrete beams without stirrups: II. Verification and calibration. Journal of Structural Engineering-ASCE, 131(12): 1886-1897. http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1886)

(33) Kim, J.K., Park, Y.D. (1996). Prediction of shear strength of reinforced concrete beams without web reinforcement. ACI Materials Journal 93(3): 213-222.

(34) Bažant, Z.P., Kazemi M. P. (1991). Size effect in diagonal shear failure. ACI Structural Journal, 88(3): 268-276.

(35) Adebar, P., Collins M.P. (1996). Shear strength of members without transverse reinforcement. Canadian Journal of Civil Engineering, 23(1): 30-41. http://dx.doi.org/10.1139/l96-004

(36) Ahmad, S.H., Khaloo, A.R., Poveda, A. (1986). Shear capacity of reinforced high-strength concrete beams. ACI Journal, 83(2): 297-305.

(37) Angelakos, D., Bentz, E.C., Collins, M.P. (2001). Effect of concrete strength and minimum stirrups on shear strength of large members. ACI Structural Journal, 98(3): 291-300.

(38) Reineck, K.H., Kuchma, D.A., Kang Su Kin, Marx, S. (2003). Shear data base for reinforced concrete members without shear reinforcement. ACI Structural Journal 100(2): 240-249.

(39) Bresler, B., Scordelis, A.C. (1963). Shear strength of reinforced concrete beam. Proceedings of ACI Journal, 60(1): 51-74.

(40) Chana, P.S. (1981). Some Aspects of Modeling the Behavior of Reinforced Concrete under Shear Loading. Technical Report Nr. 543. Wexham Springs: Cement and Concrete Assoc.

(41) Collins, M.P., Kuchma, D. (1999). How safe are our large, lightly reinforced concrete beams, slabs and footings?, ACI Structural Journal, 96(4): 482-490.

(42) Diaz de Cossio, R., Siess, C.P. (1960). Behavior and strength in shear of beams and frames without web reinforcement. Proceedings of American Concrete Institute Journal, 56(2): 695-735.

(43) Elzanaty, A. H., Nilson, A. H., Slate, F.O. (1986). Shear capacity of reinforced concrete beams using high-strength concrete. ACI Journal, Proceedings, 83(2): 290-296.

(44) Grimm, R. (1997). Einfluß bruchmechanischer kenngrößen auf das biege- und schubtragverhalten hochfester betone. Darmstadt: Diss., Fachb. Konstr. Ingenieurbau der TH Darmstadt, 1996 und Berlin: DafStb H.477, Beuth Verlag GmbH.

(45) Islam, M.S., Pam, H.J., Kwan, A.K.H. (1998). Shear capacity of high-strength concrete beams with their point of inflection within the shear span. Proc of Inst of Civil Engr - Struct & Bldgs, 128(1): 91-99.

(46) Krefeld, W.J., Thurston, C.W. (1966). Studies of the shear and diagonal tension strength of simply supported reinforced concrete beams. Proceedings of ACI Journal, 63(4): 451-476.

(47) Kuchma, D. (1999-2002). Shear Databank. Urbana-Champaign, IL: University of Illinois. http://cee.ce.uiuc.edu/kuchma/ sheardatabank.

(48) Leonhardt, F., Walter, R. (1962). Schubversuche an einfeldriegen Stahlbeton-balken mit und ohne Schubbewehrung zur Ermittlung der Schubtragfähigkeit und der Oberen Schubspannungsgrenze, vol. 151.

(49) Moody, K.G., Viest, I.M., Elstner, R.C. (1954). Shear strength of reinforced concrete beams. Part 1 - Test of simple beams. Journal of the American Institute, 51(12): 317-332.

(50) Morrow, J., Viest, I.M. (1957). Shear strength of reinforced concrete frame members without web reinforcement. Proceedings of ACI Journal, 53(3): 833-869.

(51) Mphonde, A.G., Franz, G.C. (1984). Shear tests of high and low-strength concrete beams without stirrups. ACI Structural Journal, 81(4): 350-357.

(52) Thorenfeldt, E. (1990). Shear capacity of reinforced high-strength concrete beams. HS Conc-Proc., 121: 129-154.

(53) Bentz, E.C., Buckley, S. (2005). Repeating a classic set of experiments on size effect in shear of members without strirrups. ACI Structural Journal, 102(6): 832-838.

(54) Cladera, A., Mari, A.R. (2004). Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups. Engineering Structures, 26(7): 917-926. http://dx.doi.org/10.1016/j.engstruct.2004.02.010

(55) Carmona, J.R., Ruiz, G., Del Viso, J.R. (2007). Mixed-mode crack propagation through reinforced concrete. Engineering Fracture Mechanics, 74(17): 2788-2809. http://dx.doi.org/10.1016/j.engfracmech.2007.01.004

(56) Bažant, Z.P. (1984). Size effect in blunt fracture: Concrete, rock, metal. Journal of Engineering Mechanics-ASCE, 110(4): 518-535. http://dx.doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)

(57) Bažant, Z.P., Planas, J. (1998). Fracture Size Effect in Concrete and Other Quasibrittle Materials. Boca Raton: CRC Press.

(58) P.E. Petersson. (1981). Crack Growth and Development of Fracture Zone in Plain Concrete and Similar Materials. Report No. TVBM-1006, Lund, Sweden: Division of Building Materials, Lund Institute of Technology.

(59) Ruiz, G. (2001). Propagation of a cohesive crack crossing a reinforcement layer. International Journal of Fracture, 111(3): 265-282. http://dx.doi.org/10.1023/A:1012260410704

(60) Carpinteri, A., Carmona, J.R., Ventura G. (2011). Failure mode transitions in reinforced concrete beams – Part 2: Experimental tests. ACI Structural Journal, 108:286-293.

(61) Carpinteri, A., Carmona, J.R., Ventura G. (2011). Failure mode transitions in reinforced concrete beams – Part 1: Theoretical model. ACI Structural Journal, 108:277-285.

(62) Carmona, J.R., Ruiz, G. (2014). Bond and size effects on the shear capacity of RC beams without stirrups. Engineering Structures, 66:45-56. http://dx.doi.org/10.1016/j.engstruct.2014.01.054

(63) ACI-318 (2011). Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. Farmington Hills, MI, USA: ACI.

(64) Fernández-Montes, D., Díaz-Heredia, E., González-Valle, E. (2014). Evaluación del ajuste e introducción de la seguridad en el modelo experimental del EC-2 para estimar la capacidad a cortante en elementos lineales de hormigón armado sin armadura transversal. Hormigón y Acero, 65 (271): 71-84. http://dx.doi.org/10.1016/S0439-5689(14)50008-3

(65) CEN. (2004). Eurocode 2. Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings (EN1992-1-1). European Committee for Standardization (CEN).

Publicado

2015-09-30

Cómo citar

Carmona, J. R., & Ruiz, G. (2015). Evaluación de la carga de fallo por tracción diagonal en vigas de hormigón armado sin cercos a través del estudio del efecto de tamaño. Informes De La Construcción, 67(539), e109. https://doi.org/10.3989/ic.14.092

Número

Sección

Artículos