Caracterización de un compuesto de polipropileno y polietileno para la producción de ladrillos en muros no estructurales
DOI:
https://doi.org/10.3989/ic.6265Palabras clave:
polietileno, polipropileno, resistencia a compresión, resistencia a flexión, ladrillos ecológicosResumen
Este artículo investiga la viabilidad en el uso de plástico reciclado compuesto de polipropileno (PP) y polietileno de alta densidad (HDPE), como base para la generación de ladrillos en muros no estructurales a partir de la caracterización del material. Se evaluaron las propiedades a deformación bajo la aplicación de esfuerzos de compresión, flexión y tracción; se determinó la resistencia al fuego del material mediante el ensayo de inflamabilidad, y se evalúo su capacidad de absorción de agua. Se obtuvieron resultados satisfactorios en los ensayos realizados; se encontró que la resistencia a la compresión del material cumple con los requisitos exigidos en la norma de ladrillos convencionales (arcilla - concreto), y las propiedades físico- químicas del compuesto cumple como material para el uso en muros no estructurales; lo que lo convierte en un material innovador y con un enorme potencial en el sector de la construcción.
Descargas
Citas
(1) Salazar, E.A., Arroyave J.F., Moreno, I.Y. (2014). Eco-Sustainable housing development for vulnerable population. Ingeniería y Competitividad, 16(1), 249-259. Retrieved from http://www.scielo.org.co/scielo.php?pid=S0123-30332014000100022&script=sci_arttext https://doi.org/10.25100/iyc.v16i1.3729
(2) Jung, H., Shin, G., Kwak, H., Hao, L.T., Jegal, J., Kim, H.J., Jeon, H., Park J., Oh, D. (2023). Review of polymer echnologies for improving the recycling and upcycling. Chemosphere, 320, 138089. https://doi.org/10.1016/j.chemosphere.2023.138089 PMid:36754297
(3) Wiman, H., Siltaloppi, J., Leinonen, A. (2023). Finding high-impact intervention points for plastic recycling using an exploratory. Journal of Cleaner Production, 395, 136396. https://doi.org/10.1016/j.jclepro.2023.136396
(4) ONU (2018). Noticias ONU, 5 Junio 2018. Retrieved from https://news.un.org/es/story/2018/06/1435111.
(5) ONU (2022). Noticias ONU, 2 March 2022. Retrieved from https://news.un.org/es/story/2022/03/1504922#:~:text=Se%20espera%20que%20se%20duplique,la%20agencia%20de%20la%20ONU.
(6) Superintendencia de Servicios Públicos Domiciliarios (2017). SSPD, Informe Nacional de Aprovechamiento. Retrieved from https://www.superservicios.gov.co/sites/default/files/inline-files/3._informe_ nacional_de_aprovechamiento_ 2017%20%281%29.pdf
(7) Superintendencia de Servicios Públicos Domiciliarios- SSPD, 2022. Retrieved from https://www.superservicios.gov.co/publicaciones.
(8) DNP (2016). Retrieved from https://www.dnp.gov.co/Paginas/-Rellenos-sanitarios-de-321-municipios-colapsar%C3%A1n-en-cinco-a%C3%B1os,-advierte-el-DNP--.aspx.
(9) Turku, I., Keskisaari, A., Kärki, T., Puurtinen, A., Marttila, P. (2017). Characterization of wood plastic composites manufactured from recycled plastic blends. Composite Structures, 161, 469-476. https://doi.org/10.1016/j.compstruct.2016.11.073
(10) Maddah, H.A. (2016). Polypropylene as a promising plastic: a review. American Journal of Polymer Science, 6(1), 1-11. Retrieved from http://article.sapub.org/10.5923.j.ajps.20160601.01.html
(11) Antico, F.C., Wiener, M.J., Araya-Letelier, G., González Retamal, R. (2017). Eco-bricks: a sustainable substitute for construction materials. Revista de la Construcción, 16(3), 518-526. https://doi.org/10.7764/RDLC.16.3.518
(12) Muyen, Z., Barna, T., Hoque, M. (2016). Strength properties of plastic bottle bricks and their suitability as construction materials in Bangladesh, Progressive Agriculture, 27(3), 362-368. https://doi.org/10.3329/pa.v27i3.30833
(13) Valinejadshoubi, M., Valinejadshoubi, M., Shakibaba, A. (2013). Investigating the application of plastic bottle as a sustainable material in the building construction, Revista Internacional de Investigación en Ciencia, 2(1), 28-34. Retrieved from https://www.researchgate.net/publication/272093102_Investigating_the_Application_of_Plastic_Bottle_as_a_Sustainable_Material_in_the_Building_Construction
(14) Turku, I., Kärki, T., Puurtinen, A. (2018). Durability of wood plastic composites manufactured from recycled plastic. Heliyon. 4(3), E00559. https://doi.org/10.1016/j.heliyon.2018.e00559 PMid:29560470 PMCid:PMC5857712
(15) Martins Barros, M., Ferreira Leão de Oliveira, M., da Conceição Ribeiro, R.C., Cruz Bastos, D., Gomes de Oliveira, M. (2020). Ecological bricks from dimension stone waste and polyester resin, Construction and Building Materials, 232,117252. https://doi.org/10.1016/j.conbuildmat.2019.117252
(16) Akinyele, J., Igba, U., Adigun, B. (2020). Effect of waste PET on the structural properties of burnt bricks, Scientific African, 7, e00301. https://doi.org/10.1016/j.sciaf.2020.e00301
(17) Martínez Amariz, A.D., Cote Jiménez, M.L. (2014). Diseño y fabricación de ladrillo reutilizando materiales a base de PET, INGE CUC, 10(2), 76-80. Retrieved from https://revistascientificas.cuc.edu.co/ingecuc/article/view/493
(18) París Londoño, L.S., González Villa, S.M. (2009). Caracterización de los materiales plásticos reciclados provenientes de la industria bananera empleados para la elaboración de madera plástica, Revista Latinoamericana de Metalurgia y Materiales, 1(4), 1453-1460. Retrieved from https://nanopdf.com/download/caracterizacion-de-los-materiales-plasticos_pdf
(19) ASTM D695-15 (2019). Standard test method for compressive properties of rigid plastics.
(20) ASTM D790-03 (2017). Flexural properties of unreinforced and reinforced plastics and electrical insulating materials.
(21) ASTM D638-14 (2022). Standard test method for tensile properties of plastics.
(22) ASTM D 635-18 (2022). Standard test method for rate of burning and/or extent and time of burning of plastics in a horizontal position.
(23) ASTM D 3418-15 (2021). Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry.
(24) ASTM D570. Standard test method for water absorption of plastics.
(25) NTC 4205-2 (2000). Unidades de mampostería de arcilla cocida, ladrillos y bloques cerámicos. Parte 2: Mamposteria no estructural.
(26) Department of Polymer Science (1998). Mechanical properties of polymers. Retrieved from https://www.pslc.ws/spanish/mech.htm.
(27) Archila Gonzalez, D.J., Figueroa Parra, G.C. (2017). Repositorio UGC. Retrieved from https://repository.ugc.edu.co/bitstream/handle/11396/5517/1.%20TRABAJO%20DE%20GRADO.pdf?sequence=1&isAllowed=y.
(28) Flores Ramírez, R.N. (201). Ladrillos de plástico reciclaje para mampostería no portante. Universidad Católica de Cuenca, Cuenca. Retrieved from https://dspace.ucacue.edu.ec/handle/ucacue/1587
(29) Takeuchi, C.P. (2007). Comportamiento en la mamposteria estructural, Bogotá, Colombia, Universidad Nacional de Colombia.
(30) Beltrán, M., Marcilla, A. Retrieved from https://pdf.capital/86149756-tecnologia-de-polimeros-m-beltran-y-a-marcilla1-413273.html.
(31) Méndez Bautista, M.T., Coreño Alonso, J. (2010). Structure-property relationship of polymers. Educación Química, 21(4). https://doi.org/10.1016/S0187-893X(18)30098-3
(32) Plujim, v.d.R. (1999). Out-of-plane bending of masonry: behaviour and strength. Eindhoven University of technology, pp. 271.
(33) Sanchez Gil, A.Y., Mejía Angarita, F.Y. (2009). Análisis de los esfuerzos de compresión en unidades de mampostería estructural y muretes E-9, E-11 y E-14 de una empresa ladrillera de Santander, pp. 116.
(34) Hilado, C.J. (1968). Flammability tests for cellular plastics-Part I. Fire Technology, 4, 32-45. https://doi.org/10.1007/BF02588604
(35) Suharty, N.S., Almanar, I.P., Dihardjo, K., Astasari, N. (2012). Flammability, biodegradability and mechanical properties of bio-composites waste polypropylene/kenaf fiber containing nano CaCO3 with diammonium phosphate. Procedia Chemistry, 4, 282-287. https://doi.org/10.1016/j.proche.2012.06.039
(36) Martinez López, Y., Fernández Concepción, R.R., Álvarez Lazo, D.A., García González, M., Martinez Rodríguez, E. (2014). Evaluación de las propiedades físico-mecánicas de los tableros de madera plástica producidos en Cuba respecto a los tableros convencionales, Chapingo, 20(3), 227-236. https://doi.org/10.5154/r.rchscfa.2014.02.003
(37) Krutibash, R., Hemalata, P., Anup, K.S., Bibhudatta, P., Sourabh, M., Asit, S., Suryakanta, R. (2020). Glass/jute/sisal fiber reinforced hybrid polypropylene polymer composites: Fabrication and analysis of mechanical and water absorption properties. Materials Today Proceedings, 33(8), 5273-5278. https://doi.org/10.1016/j.matpr.2020.02.964
(38) Sutar, H., Sahoo, P.C., Sahu, P.S., Sahoo, S., Murmu, R., Swain, S., Mishra, S.C. (2018). Mechanical, thermal and crystallization Properties of Polypropylene (PP) reinforced composites with High Density Polyethylene (HDPE) as matrix. Materials Sciences and Applications, 9(5), 502-515. https://doi.org/10.4236/msa.2018.95035
(39) Asensio Tassis, I. (2018). Glass transition and molecular dynamics of amorphous solid dispersions of chloramphenicol is polylactic acid. Universitat Politécnica de Catalunya, Barcelona, 2018.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.