Informes de la Construcción, Vol 70, No 551 (2018)

Nuevos métodos de fabricación digital de paneles de GRC de forma libre


https://doi.org/10.3989/ic.16.161

E. Castañeda
Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid (UPM), España
orcid http://orcid.org/0000-0002-5382-7816

B. Lauret
Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid (UPM), España
orcid http://orcid.org/0000-0002-3723-5001

G. Ovando
Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid (UPM), España
orcid http://orcid.org/0000-0001-9585-9560

J. M. Lirola
Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid (UPM), España
orcid http://orcid.org/0000-0003-2978-3697

Resumen


Los paneles de forma libre de GRC son de gran aplicación en elementos de fachadas ligeras. Dichos paneles pueden fabricarse a través de una gran variedad de procesos. Sin embargo, a pesar de sus ventajas como la moldeabilidad, durabilidad y ligereza, se ven penalizados por el elevado precio de los correspondientes moldes, sobre todo si no hay una repetición suficiente de las piezas y la forma del panel difiere de lo convencional. Las nuevas tecnologías digitales permiten diversas posibilidades en el campo de la construcción y la producción de moldes con geometrías complejas. En el presente artículo se presenta una serie de métodos recientes en la fabricación de paneles de GRC de forma libre. Se discutirán ventajas e inconvenientes de dichos métodos, sobre todo la importancia del molde y su repercusión económica. Finalmente se extraerán conclusiones sobre la viabilidad técnica y las posibilidades que se abren con este análisis.

Palabras clave


Hormigón reforzado con fibra de vidrio (GRC o GFRC); arquitectura de forma libre; fabricación digital; panel de fachada; molde doble curvatura

Texto completo:


HTML PDF XML

Referencias


(1) Henriksen, T., Lo, S., & Knaack, U. (2016). A new method to advance complex geometry thin- walled glass fibre reinforced concrete elements. Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2016.04.002

(2) Llatas, C. (2011). A model for quantifying construction waste in projects according to the European waste list. Waste Management, 31(6), 1261–1276. https://doi.org/10.1016/j.wasman.2011.01.023 PMid:21353519

(3) Casta-eda, E., Lauret, B., Lirola, J. M., & Ovando, G. (2015). Free-form architectural envelopes: Digital processes opportunities of industrial production at a reasonable price. Journal of Facade Design and Engineering, 3(1), 1–13. https://doi.org/10.3233/FDE-150031

(4) Gao, M. (2015). Application of light-weight GRC cladding panel in Nanjing Youth Olympic Conference Centre. GRC 2015 Congress (pp. 1–16). Dubai.

(5) Rai, A., & Joshi, Y. P. (2014). Applications and Properties of Fibre Reinforced Concrete. Journal of Engineering Research and Applications, 4(5), 123–131.

(6) Rodriguez Santiago, J., Jordan Reyes, M. (1986). Aplicaciones del GRC en España y Argelia. Informes de la Construcción, 38 (383), 65-72. https://doi.org/10.3989/ic.1986.v38.i383.1733

(7) Instituto Eduardo Torroja (2006). DIT. Sistema DRACE para cerramiento de fachadas con paneles prefabricados de GRC. España.

(8) Llerena, Á. B., Caballero, J. M., & Zaldo, V. (1981). Aplicaciones del cemento reforzado con fibra de vidrio (GRC). Informes de la Construcción, 33 (333-334-335-336), 73-81. https://doi.org/10.3989/ic.1981.v33.i333-334-335-336.2196

(9) Helvoirt, J. (2003). Een 3D blob huid Afstudeerverslag 3370. Technische Universiteit Eindhoven.

(10) Lloret, E., Shahab, A. R., Linus, M., Flatt, R. J., Gramazio, F., Kohler, M., & Langenberg, S. (2015). Complex concrete structures: Merging existing casting techniques with digital fabrication. CAD Computer Aided Design, 60, 40–49. https://doi.org/10.1016/j.cad.2014.02.011

(11) Iori, T., & Poretti, S. (2005). Pier Luigi Nervi's Works for the 1960 Rome Olympics. In Cuarto Congreso Nacional de Historia de la Construcción (pp. 605–613). Cádiz.

(12) Pronk, A., Rooy, I. Van, & Schinkel, P. (2009). Double-curved surfaces using a membrane mould. Proceedings of the International Association for Shell and Spatial Structures (IASS) (pp. 618–628). Valencia.

(13) Kok, M. (2013). Textile reinforced double curved concrete elements Manufacturing free-form architecture with a flexible mould. Delft University of Technology.

(14) West, M., & Araya, R. (2009). Fabric Formwork for Concrete Structures and Architecture. IV International Conference on Textile Composites and Inflatable Structures. Stuttgart.

(15) Van Hennik, P., & Houtman, R. (2008). Pneumatic Formwork for Irregular Curved Thin Shells. In E. O-ate & B. Kröplin (Eds.), Textile Composites and Inflatable Structures II (pp. 99–116). inbook, Dordrecht: Springer Netherlands.

(16) Pronk, A., Seffinga, A., el Ghazi, H., & Schuijers, N. (2015). Flexible mould by the use of spring steel mesh. Proceedings of the International Association for Shell and Spatial Structures (IASS). Amsterdam.

(17) Boers, S. (2006). OptiMal Forming Solutions. FlexiMold, 1–2.

(18) Eigenraam, P. (2013). Flexible mould for production of double-curved concrete elements. Delft University of Technology.

(19) Schipper, R. (2015). Double-curved precast concrete elements. Research into technical viability of the flexible mould method. Delft University of Technology.

(20) Raun, C., & Kirkegaard, P. (2015). Adaptive Mould - A Cost-Effective Mould System Linking Design and Manufacturing of Double-Curved Panels. GRC 2015 Congress, (pp. 1–7). Dubai.

(21) Schipper, R., & Vambersky, J. (2010). A flexible mould for double curved pre-cast concrete elements. BFT International, 8, (1–4).

(22) Van den Ende, B. (2011). Standard Principles: Double Curved Facades (DISS). Delft University of Technology.

(23) Hauschild, M., & Karzel, R. (2011). Digital Processes: Planning, Designing, Production. Birkhäuser. https://doi.org/10.11129/detail.9783034614351

(24) Kolarevic, B. (2005). Digital Praxis: From Digital to Material. 3rd International Conference on Innovation in Architecture, Engineering and Construction (AEC) (p. 5).

(25) Hew, K., Fisher, N., & Awbi, H. (2001). Towards an integrated set of design tools based on a common data format for building and services design. Automation in Construction, 10(4), 459–476. https://doi.org/10.1016/S0926-5805(00)00082-0

(26) Alonso, L., Lauret, B., Casta-eda, E., Dominguez, D., & Ovando, G. (2014). Free-Form Architectural Façade Panels: An Overview of Available Mass-Production Methods for Free-Form External Envelopes. Construction and Building Research (pp. 149–156). Springer Netherlands. https://doi.org/10.1007/978-94-007-7790-3_20

(27) Martins, P., Campos, P., Nunes, S., & Sousa, J. (2015). Expanding the Material Possibilities of Lightweight Prefabrication in Concrete Through Robotic Hot-Wire Cutting . eCAADe 33. 2 (pp. 341–351). Viena.

(28) Afify, H., & Elghaffar, Z. (2007). Advanced Digital Manufacturing Techniques (CAM) in Architecture. Em'body'ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (pp. 67–80). Alexandria, Egypt: The Arab Society for Computer Aided Architectural Design.

(29) Adeyeye, O., Pasquire, C., Soar, R., Austin, S., & Pendlebury, M. (2006). Architectural freeform construction: potential use in repair for re-use, maintenance and manufacture of building components. Conference of the Royal Institution of Chartered Surveyors. RICS, The Bartlett School, UCL and the contributors.

(30) Naboni, R., & Paoletti, I. (2015). Advanced Customization in Architectural Design and Construction. Springer International Publishing. https://doi.org/10.1007/978-3-319-04423-1

(31) Oesterle, S., Vansteenkiste, A., & Mirjan, A. (2012). Zero Waste Free-Form Formwork. Icff 2012. Second International Conference on Flexible Formwork (pp. 258–267). BRE CICM, University of Bath.

(32) Gould, J. (2010). Formtexx. Freeform facades with automotive precision. London.

(33) Lee, G., & Kim, S. (2012). Case Study of Mass Customization of Double-Curved Metal Façade Panels Using a New Hybrid Sheet Metal Processing Technique. Journal of Construction Engineering and Management, 138(11), 1322–1330. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000551

(34) Cai, Z. Y., & Li, M. Z. (2002). Multi-point forming of three-dimensional sheet metal and the control of the forming process. International Journal of Pressure Vessels and Piping, 79(4), 289–296. https://doi.org/10.1016/S0308-0161(02)00017-0

(35) Paunoiu, V., Cekan, P., Gavan, E., & Nicoara, D. (2008). Numerical simulations in reconfigurable multipoint forming. International Journal of Material Forming, 1, 181–184. https://doi.org/10.1007/s12289-008-0021-4

(36) Alonso, L., Bedoya, C., Lauret, B., & Alonso, F. (2014). F2TE3: sistema de cerramiento transparente, ligero, de altas prestaciones energéticas que permite el dise-o con formas libres. Informes de la Construcción, 65(532), 443–456. https://doi.org/10.3989/ic.12.068

(37) Park, J., & Kim, Y. (2003). Fundamental studies on the incremental sheet metal forming technique. Journal of Materials Processing Technology, 140, 447–453. https://doi.org/10.1016/S0924-0136(03)00768-4

(38) Brell-Çokcan, S., & Braumann, J. (2016). Robots in Architecture. http://www.robotsinarchitecture.org/

(39) Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N., Pottmann, H., & Pauly, M. (2010). Paneling Architectural Freeform Surfaces. ACM Trans. Graph. SIGGRAPH '10. 29 (pp. 45:1-45:10). New York. https://doi.org/10.1145/1833349.1778782

(40) Buswell, R., Thorpe, A., Soar, R., & Gibb, A. (2008). Design, data and process issues for mega-scale rapid manufacturing machines used for construction. Automation in Construction, 17(8), 923–929. https://doi.org/10.1016/j.autcon.2008.03.001

(41) Kolarevic, B. (2003). Architecture in the Digital Age. Design and Manufacturing. Nueva York- Londres: Spon Press -Taylor & Francis Group.

(42) Spuybroek, L. (2004). Nox: Machining architecture. Thames & Hudson.

(43) Gard, F. (2013). Flexible Mold. Eindhoven University of Technology. http://alexandria.tue.nl/extra2/afstversl/bwk/765926.zip

(44) Van Rietbergen, B. (2010). FE-analysis of the 3-point bending experiment. Eindhoven University of Technology.

(45) Grünewald, S., Schipper, R., & Hordijk, D. (2016). Double-curved Panels produced in a flexible Mould with self- compacting Fibre Reinforced Concrete. Ultra-High Performance Concrete and High Performance Construction Materials: Proceedings of HiPerMat 2016 4th International Symposium on Ultra High Performance Concrete and High Performance Construction Materials 27(pp. 1–8). http://hdl.handle.net/1854/LU-7147033

(46) Cincinnatti Incorporated. (2015). BAAM. http://www.e-ci.com/baam/

(47) Castañeda V., E. (2017). Industrialización de la envolvente opaca arquitectónica de forma libre: Nueva alternative de paneles de GRC sin molde (Tesis doctoral). ETSAM-UPM, Madrid.




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es