Thermal characterization of gypsum boards with PCM

Authors

  • A. Oliver Dpto. Construcción y Tecnología Arquitectónicas. ETS de Arquitectura (E.T.S.)
  • F. J. Neila Dpto. Construcción y Tecnología Arquitectónicas. ETS de Arquitectura (E.T.S.)
  • A. García Dpto. Construcción y Tecnología Arquitectónicas. ETS de Arquitectura (E.T.S.)

DOI:

https://doi.org/10.3989/ic.09.036

Keywords:

CM, gypsum, board, thermal energy, storage

Abstract


In this research the suitability of including PCM in gypsum boards to multiply their thermal energy storage capacity is demonstrated. So the thermal storage capacity of several constructive materials is evaluated and compared, whose use and application is similar to the gypsum boards: paneling of a wall and partition wall. An experimental facility has been designed and operated for the study of the new compound material, exchanging heat with air. It has been studied the influence of different parameters and system variables (working temperature, air velocity, display of the phase change materials, and location in the building…), to establish a latent heat storage system which –complemented with passive strategies (solar gains, natural ventilation)– reduces the acclimatization energy consumption in buildings. So, here we demonstrate that a gypsum board including a 44.5% in weight of phase change materials (PCM) is able to store –in a 1.5 cm thick- 5 times the thermal energy of a current gypsum board –with the same thickness–, and the same amount to 11.5 cm brick layer, in the comfort temperature range (20-30 ºC), maintaining the mechanical and physical properties required by the regulations in force.

Downloads

Download data is not yet available.

References

(1) Abhat, A. (1983). “Low temperature latent heat Thermal energy storage-Heat storage materials”. Solar Energy 30 (4). doi:10.1016/0038-092X(83)90186-X

(2) Athientis A. K., L. C., Hawes D., Banu D., Feldman D. (1997). “Investigation of the Thermal performance of a passive solar test-room with wall latent heat storage”. Building and Environment. 32: 405-410. doi:10.1016/S0360-1323(97)00009-7

(3) BASF, www.basf.com.

(4) Bader, M. (2002) “Microencapsulated Paraffin in Polyethylene for Thermal Energy Storage”. Department of Chemical & Material Engineering, School of Engineering. the University of Auckland. New Zealand.

(5) Darkwa, K. and J. S. Kim (2004). “Heat transfer in composite laminated phase-change drywall”. Proceedings of the institution of Mechanical Engineers, Part A: Journal of Power and Energy 218 (2): 83-87. doi:10.1243/095765004773644085

(6) Feldman D., B. D., Hawes D., Ghanbari E.(1991). “Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard”. Solar Energy Materials. 22 231-242. doi:10.1016/0165-1633(91)90021-C

(7) Hasan, A. and A. A. Sayigh (1994). “Some fatty acids as phase-change Thermal energy storage materials”. Renewable energy 4 (1): 69-76. doi:10.1016/0960-1481(94)90066-3

(8) Hauer, A. (2002). “Innovative Thermal Energy Storage Systems for Residential Use”, Bavarian Center for Applied Energy Research, ZAE Bayern: 8.

(9) Hawlader, M. N. A., M. S. Uddin, et al. (2003). “Microencapsulated PCM Thermal-energy storage system”. Applied Energy 74 (1): 195-202. doi:10.1016/S0306-2619(02)00146-0

(10) Hunger M, Entrop AG, Mandilaras I, Brouwers HJH (2009) “The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials” Cement & Concrete Composites 31.

(11) Koschenz M., Lehmann B. “Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings” Energy and Buildings 36 (2004) 567−578. doi:10.1016/j.enbuild.2004.01.029

(12) Neeper, D. A. (2000). “Thermal dynamics of wallboard with latent heat storage”. Solar Energy 68 (5): 393-403. doi:10.1016/S0038-092X(00)00012-8

(13) Oliver, A. (2009). “Incorporación de Materiales de Cambio de Fase en Placas de Yeso Reforzadas con fibras de polipropileno. Aplicación a Sistemas de Calefacción y Refrigeración Pasivos para Almacenamiento de Calor Latente en Edificios”. Tesis Doctoral.

(14) Salyer, I. O. (1999). “Phase Change Materials incorporated throughout the Structure of Polymer Fibers”. US 5, 885, 475.

(15) Stetiu, C. and H. E. Feustel (1998). “Phase-Change Wallboard and Mechanical Night Ventilation in Commercial Buildings”. Lawrence Berkeley National Laboratory.

(16) X Wang, YP Zhang, W Xiao, RL Zeng, QL Zhang (2009) “Review on thermal performance of phase change energy storage building envelope”. Chinese Science Bulletin | March 2009 | vol. 54 | no. 6 | 920-928.

(17) Zalba, B. (2002). “Almacenamiento térmico de energía mediante cambio de fase”. Procedimiento experimental. Departamento de ingeniería Mecánica. Zaragoza Universidad de Zaragoza.

(18) Y. Zhang et al. “Application of latent heat thermal energy storage in buildings: State-of-the-art and Outlook” (2008) / Building and Environment 42 (2007) 2197−2209. doi:10.1016/j.buildenv.2006.07.023

Downloads

Published

2010-09-01

How to Cite

Oliver, A., Neila, F. J., & García, A. (2010). Thermal characterization of gypsum boards with PCM. Informes De La Construcción, 62(519), 55–66. https://doi.org/10.3989/ic.09.036

Issue

Section

Research Articles