Design proposal for ultimate shear strength of tapered steel plate girders

Authors

DOI:

https://doi.org/10.3989/ic.15.065

Keywords:

tapered steel plate girders, Resal effect, mechanical model, ultimate shear resistance, EN 1993-1-5 rules, design proposal

Abstract


Numerous experimental and numerical studies on prismatic plate girders subjected to shear can be found in the literature. However, the real structures are frequently designed as non-uniform structural elements. The main objective of the research is the development of a new proposal for the calculation of the ultimate shear resistance of tapered steel plate girders taking into account the specific behaviour of such members. A new mechanical model is presented in the paper and it is used to show the differences between the behaviour of uniform and tapered web panels subjected to shear. EN 1993-1-5 design specifications for the determination of the shear strength for rectangular plates are improved in order to assess the shear strength of tapered elements. Numerical studies carried out on tapered steel plate girders subjected to shear lead to confirm the suitability of the mechanical model and the proposed design expression.

Downloads

Download data is not yet available.

References

(1) Basler, K. (1960). Strength of Plate Girders in Shear. Fritz Engineering Laboratory Report 251-20. Bethlehem, PA, USA: Lehigh University.

(2) Chern, C., Ostapenko, A. (1969). Ultimate Strength of Plate Girders Under Shear. Fritz Engineering Laboratory Report 328.7. Bethlehem, PA, USA: Lehigh University. PMid:4310599

(3) Höglund, T. (1971). Behavior and Strength of the Web of Thin Plate I-girders. Division of Building Statics and Structural Engineering. Bulletin, 93. Stockholm, Sweden: Royal Institute of Technology.

(4) Höglund, T. (1997). Shear buckling resistance of steel and aluminium plate girders. Thin-Wall Structures, 29(1-4): 13- 30. https://doi.org/10.1016/S0263-8231(97)00012-8

(5) Porter, D. M., Rockey, K. C., Evans, H. R. (1975). The collapse behavior of plate girders loaded in shear. The Structural Engineer, 53(8): 313-325.

(6) Rockey, K. C., ?kaloud, M. (1972). The ultimate load behaviour of plated girders loaded in shear. The Structural Engineer, 50(1): 29-47.

(7) Falby, W. E., Lee, G. C. (1976). Tension field design of tapered webs. Engineering Journal, 13: 11-17. AISC.

(8) Davies, G., Mandal, S. N. (1979). The collapse behaviour of tapered plate girders loaded within the tip. Proceedings of the Institution of Civil Engineers, Part 2, 67(1): 65-80. https://doi.org/10.1680/iicep.1979.2317

(9) Takeda, H., Mikami, I. (1987). Ultimate strength of plate girder with varying depth loaded in shear. J Struct Eng, 33A: 115-126.

(10) Roberts, T. M., Newmark, C. B. (1997). Shear strength of tapered aluminium plate girders. Thin-Wall Struct, 29(1-4): 47-58. https://doi.org/10.1016/S0263-8231(97)00014-1

(11) Zárate, A. V., Mirambell, E. (2004). Shear strength of tapered steel plate girders. Proc Inst Civil Eng – Struct Build, 157(5): 343-354. https://doi.org/10.1680/stbu.2004.157.5.343

(12) Shanmugam, N. E., Min, H. (2007). Ultimate load behaviour of tapered steel plate girders. Steel Compos Struct, 7(6): 469-486. https://doi.org/10.12989/scs.2007.7.6.469

(13) Abu-Hamd, M., Abu-Hamd, I. (2011, 10-14 May). Buckling strength of tapered bridge girders under shear and bending. In: Proceedings of the annual stability conference. Pittsburgh, Pennsylvania: Structural Stability Research Council.

(14) Lee, S. C., Davidson, J. S., Yoo C. H. (1996). Shear buckling coefficients of plate girder web panels. Comput Struct, 59(5): 789-795. https://doi.org/10.1016/0045-7949(95)00325-8

(15) Mirambell, E., Zárate, V. (2000). Web buckling of tapered plate girders. Proceedings of the Institution of Civil Engineers – Structures and Buildings, 140(1): 51-60. https://doi.org/10.1680/stbu.2000.140.1.51

(16) Estrada, I., Real, E., Mirambell, E. (2008). A new developed expression to determine more realistically the shear buckling stress in steel plate structures. J Constr Steel Res, 64(7-8): 737-747. https://doi.org/10.1016/j.jcsr.2008.01.028

(17) Zárate, A. V. (2002). Un modelo para dimensionamiento de vigas armadas de inercia variable de alma esbelta (PhD Thesis). Barcelona, Spain: Universitat Politècnica de Catalunya.

(18) CEN (Comité Européen de Normalisation). (2006). EN 1993-1-5. Eurocode 3: Design of steel structures, Part 1-5. Plated structural elements. Brussels, Belgium: CEN.

(19) Bedynek, A., Real, E., Mirambell, E. (2013). Tapered plate girders under shear: Tests and numerical research. Engineering Structures, 46: 350-358. https://doi.org/10.1016/j.engstruct.2012.07.023

(20) Johansson, B., Maquoi, R., Sedlacek, G., Müller, C., Beg, D. (2007). Commentary and worked examples to EN 1993-1-5 "Plated structural elements". JRC Scientific and Technical Reports.

(21) Maquoi, R., Skaloud, M. (2000). Stability of plates and plated structures. General Report. Journal of Constructional Steel Research, 55: 45-68. https://doi.org/10.1016/S0143-974X(99)00077-2

(22) Samartín, A. F. (1993). Cálculo de estructuras de puentes de hormigón, pp. 132-135. Madrid, Spain: Editorial Rueda.

(23) Florida Department of Tarnsportation. (2008). "New Directions for Florida Post-Tensioned Bridges", Final report Volume 10 A, Load Rating Post-Tensioned Concrete Segmental Bridges.

(24) Abaqus/Standard V.6.8. (2010). Simulia products. Dassault Systemes, S. A.

Published

2017-03-30

How to Cite

Bedynek, A., Real, E., & Mirambell, E. (2017). Design proposal for ultimate shear strength of tapered steel plate girders. Informes De La Construcción, 69(545), e176. https://doi.org/10.3989/ic.15.065

Issue

Section

Research Articles